Reflexive activation of newly instructed stimulus–response rules: evidence from lateralized readiness potentials in no-go trials

Abstract

Previous behavioral and electrophysiological evidence has suggested that the instructions for a new choice task are processed even when they are not currently required, indicating intention-based reflexivity. Yet these demonstrations were found in experiments in which participants were set to execute a response (go). In the present experiment, we asked whether intention-based reflexivity would also be observed under unfavorable conditions in which participants were set not to respond (no-go). In each miniblock of our paradigm, participants received instructions for a task in which two new stimuli were mapped to right/left keys. Immediately after the instructions, a no-go phase began, which was immediately followed by a go phase. We found a significant stimulus-locked lateralized readiness potential in the first no-go trial, indicating reflexive operation of the new instructions. These results show that representing instructions in working memory provides sufficient conditions for stimuli to launch task processing, proceeding all the way until motor response-specific brain activation, which takes place even under unfavorable, no-go conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    The Hebrew alphabet has only 22 letters, but some of the letters have a different shape when they come at the end of a word, a fact that enabled us to slightly increase the number of stimuli.

References

  1. Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406. doi:10.1037/0033-295X.89.4.369

    Article  Google Scholar 

  2. Bargh, J. A. (1992). The ecology of automaticity: Toward establishing the conditions needed to produce automatic processing effects. American Journal of Psychology, 105, 181–199.

    Article  PubMed  Google Scholar 

  3. Besner, D., & Risko, E. F. (2005). Stimulus–response compatible orienting and the effect of an action not taken: Perception delayed is automaticity denied. Psychonomic Bulletin and Review, 12, 271–275. doi:10.3758/BF03196371

    Article  PubMed  Google Scholar 

  4. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. doi:10.1016/j.tics.2011.12.010

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bugmann, G. (2012). Modeling fast stimulus–response association learning along the occipito-parieto-frontal pathway following rule instructions. Brain Research, 1434, 73–89. doi:10.1016/j.brainres.2011.09.028

    Article  PubMed  Google Scholar 

  6. Carrillo-de-la-Peña, M. T., Galdo-Álvarez, S., & Lastra-Barreira, C. (2008). Equivalent is not equal: Primary motor cortex (MI) activation during motor imagery and execution of sequential movements. Brain Research, 1226, 134–143.

    Article  PubMed  Google Scholar 

  7. Carrillo-de-la-Peña, M. T., Lastra-Barreira, C., & Galdo-Álvarez, S. (2006). Limb (hand vs. foot) and response conflict have similar effects on event-related potentials (ERPs) recorded during motor imagery and overt execution. European Journal of Neuroscience, 24, 635–643.

    Article  PubMed  Google Scholar 

  8. Chatham, C. H., Frank, M. J., & Badre, D. (2014). Corticostriatal output gating during selection from working memory. Neuron, 81, 930–942. doi:10.1016/j.neuron.2014.01.002

    Article  PubMed Central  PubMed  Google Scholar 

  9. Cohen-Kdoshay, O., & Meiran, N. (2007). The representation of instructions in working memory leads to autonomous response activation: Evidence from the first trials in the flanker paradigm. Quarterly Journal of Experimental Psychology, 60, 1140–1154.

    Google Scholar 

  10. Cohen-Kdoshay, O., & Meiran, N. (2009). The representation of instructions operates like a prepared reflex: Flanker compatibility effects found in first trial following S–R instructions. Experimental Psychology, 56, 128–133. doi:10.1027/1618-3169.56.2.128

    Article  PubMed  Google Scholar 

  11. Cole, M. W., Bagic, A., Kass, R., & Schneider, W. (2010). Prefrontal dynamics underlying rapid instructed task learning reverse with practice. Journal of Neuroscience, 30, 14245–14254. doi:10.1523/JNEUROSCI.1662-10.2010

    Article  PubMed Central  PubMed  Google Scholar 

  12. Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 13, 1–22. doi:10.3758/s13415-012-0125-7

    Article  Google Scholar 

  13. Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37, 343–360. doi:10.1016/j.neuroimage.2007.03.071

    Article  PubMed  Google Scholar 

  14. Coles, M. G. H. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology, 26, 251–269.

    Article  PubMed  Google Scholar 

  15. De Houwer, J., Beckers, T., Vandorpe, S., & Custers, R. (2005). Further evidence for the role of mode-independent short-term associations in spatial Simon effects. Perception & Psychophysics, 67, 659–666. doi:10.3758/BF03193522

    Article  Google Scholar 

  16. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi:10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  17. Dumontheil, I., Thompson, R., & Duncan, J. (2011). Assembly and use of new task rules in fronto-parietal cortex. Journal of Cognitive Neuroscience, 23, 168–182. doi:10.1162/jocn.2010.21439

    Article  PubMed  Google Scholar 

  18. Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172–179. doi:10.1016/j.tics.2010.01.004

    Article  PubMed  Google Scholar 

  19. Eimer, M., & Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24, 1737–1747.

    PubMed  Google Scholar 

  20. Eimer, M., & Schlaghecken, F. (2003). Response facilitation and inhibition in subliminal priming. Biological Psychology, 64, 7–26. doi:10.1016/S0301-0511(03)00100-5

    Article  PubMed  Google Scholar 

  21. Everaert, T., Theeuwes, M., Liefooghe, B., & De Houwer, J. (in press). Automatic motor activation by mere instruction. Cognitive, Affective, & Behavioral Neuroscience. doi:10.3758/s13415-014-0294-7

  22. Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497–517.

    Article  PubMed  Google Scholar 

  23. Galdo-Álvarez, S., & Carrillo de la Peña, M. T. (2004). ERP evidence of MI activation without motor response execution. NeuroReport, 15, 2067–2070.

    Article  PubMed  Google Scholar 

  24. Ganor-Stern, D., Tzelgov, J., & Meiran, N. (2013). How are automatic processes elicited by intended actions? Frontiers in Psychology, 4, 851. doi:10.3389/fpsyg.2013.00851

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331–344. doi:10.1037/0096-1523.14.3.331

    PubMed  Google Scholar 

  26. Guthrie, D., & Buchwald, J. S. (1991). Significance testing of difference potentials. Psychophysiology, 28, 240–244.

    Article  PubMed  Google Scholar 

  27. Hohlefeld, F. U., Nikulin, V. V., & Curio, G. (2011). Visual stimuli evoke rapid activation (120 ms) of sensorimotor cortex for overt but not for covert movements. Brain Research, 1368, 185–195. doi:10.1016/j.brainres.2010.10.035

    Article  PubMed  Google Scholar 

  28. Hollands, J. G., & Jarmasz, J. (2010). Revisiting confidence intervals for repeated measures designs. Psychonomic Bulletin & Review, 17, 135–138. doi:10.3758/PBR.17.1.135

    Article  Google Scholar 

  29. Hommel, B. (2000). The prepared reflex: Automaticity and control in stimulus response translation. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 247–273). Cambridge, MA: MIT Press.

    Google Scholar 

  30. Huang, T. R., Hazy, T. E., Herd, S. A., & O’Reilly, R. C. (2013). Assembling old tricks for new tasks: A neural model of instructional learning and control. Journal of Cognitive Neuroscience, 25, 843–851.

    Article  PubMed  Google Scholar 

  31. Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology, 63, 124–138.

    Article  PubMed  Google Scholar 

  32. Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99, 19–27.

    Article  PubMed  Google Scholar 

  33. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility-a model and taxonomy. Psychological Review, 97, 253–270. doi:10.1037/0033-295X.97.2.253

    Article  PubMed  Google Scholar 

  34. Kranczioch, C., Mathews, S., Dean, P. J. A., & Sterr, A. (2009). On the equivalence of executed and imagined movements: Evidence from lateralized motor and nonmotor potentials. Human Brain Mapping, 30, 3275–3286.

    Article  PubMed  Google Scholar 

  35. Liefooghe, B., De Houwer, J., & Wenke, D. (2013). Instruction-based response activation depends on task preparation. Psychonomic Bulletin & Review, 20, 481–487.

    Article  Google Scholar 

  36. Liefooghe, B., Wenke, D., & De Houwer, J. (2012). Instruction-based task-rule congruency effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1325–1335.

    PubMed  Google Scholar 

  37. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. doi:10.1037/0033-295X.95.4.492

    Article  Google Scholar 

  38. Logan, G. D. (1992). Attention and preattention in theories of automaticity. American Journal of Psychology, 105, 317–339.

    Article  PubMed  Google Scholar 

  39. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.

    Google Scholar 

  40. Meiran, N., & Cohen-Kdoshay, O. (2012). Working memory load but not multitasking eliminates the prepared reflex: Further evidence from the adapted flanker paradigm. Acta Psychologica, 139, 309–313. doi:10.1016/j.actpsy.2011.12.008

    Article  PubMed  Google Scholar 

  41. Meiran, N., Cole, M. W., & Braver, T. S. (2012). When planning results in loss of control: Intention-based reflexivity and working-memory. Frontiers in Human Neuroscience, 6, 104. doi:10.3389/fnhum.2012.00104

    Article  PubMed Central  PubMed  Google Scholar 

  42. Meiran, N., Pereg, M., Kessler, Y., Cole, M. W., & Braver, T. S. (in press). The power of instructions: Proactive configuration of stimulus–response translation. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi:10.1037/a0037190

  43. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167

    Article  PubMed  Google Scholar 

  44. Moors, A., & De Houwer, J. (2006). Automaticity: A conceptual and theoretical analysis. Psychological Bulletin, 132, 297–326. doi:10.1037/0033-2909.132.2.297

    Article  PubMed  Google Scholar 

  45. Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60, 306–326.

    Article  PubMed  Google Scholar 

  46. Ramamoorthy, A., & Verguts, T. (2012). Word and deed: A computational model of instruction following. Brain Research, 1439, 54–65. doi:10.1016/j.brainres.2011.12.025

    Article  PubMed  Google Scholar 

  47. Rosenbloom, P. S., & Newell, A. (1986). The chunking of goal hierarchies: A generalized model of practice. In R. S. Michaliski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2, pp. 247–288). Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  48. Ruge, H., & Wolfensteller, U. (2010). Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cerebral Cortex, 20, 1656–1667. doi:10.1093/cercor/bhp228

    Article  PubMed  Google Scholar 

  49. Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime User's Guide. Pittsburgh: Psychology Software Tools, Inc.

  50. Shahar, N., Teodorescu, A. R., Usher, M., Pereg, M., & Meiran, N. (in press). Selective influence of working memory load on exceptionally slow reaction times. Journal of Experimental Psychology: General. doi:10.1037/a0037190

  51. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190. doi:10.1037/0033-295X.84.2.127

    Article  Google Scholar 

  52. Smulders, F. T. Y., & Miller, J. O. (2012). The lateralized readiness potential. In S. J. Luck & E. S. Kappenman (Eds.), Oxford handbook of event-related potential components (pp. 209–230). New York, NY: Oxford University Press. doi:10.1093/oxfordhb/9780195374148.013.0115

    Google Scholar 

  53. Stocco, A., Lebiere, C., O’Reilly, R. C., & Anderson, J. R. (2012). Distinct contributions of the caudate nucleus, rostral prefrontal cortex, and parietal cortex to the execution of instructed tasks. Cognitive, Affective, & Behavioral Neuroscience, 12, 611–628. doi:10.3758/s13415-012-0117-7

    Article  Google Scholar 

  54. Tzelgov, J. (1997). Automatic but conscious: That is how we act most of the time. In R. Wyer (Ed.), Advances in social cognition (Vol. 10, pp. 217–230). Mahwah, NJ: Erlbaum.

    Google Scholar 

  55. Verbruggen, F., & Logan, G. D. (2009). Automaticity of cognitive control: Goal priming in response-inhibition paradigms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1381–1388. doi:10.1037/a0016645

    PubMed  Google Scholar 

  56. Verbruggen, F., Logan, G. D., Liefooghe, B., & Vandierendonck, A. (2008). Short-term aftereffects of response inhibition: Repetition priming or between-trial control adjustments? Journal of Experimental Psychology: Human Perception and Performance, 34, 413–426. doi:10.1037/0096-1523.34.2.413

    PubMed  Google Scholar 

  57. Wenke, D., Gaschler, R., & Nattkemper, D. (2007). Instruction-induced feature binding. Psychological Research, 71, 92–106. doi:10.1007/s00426-005-0038-y

    Article  PubMed  Google Scholar 

  58. Wenke, D., Gaschler, R., Nattkemper, D., & Frensch, P. A. (2009). Strategic influences on implementing instructions for future actions. Psychological Research, 73, 587–601. doi:10.1007/s00426-009-0239-x

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author Note

This research was supported by a research grant from the USA–Israel Bi-national Science Foundation to the first and last authors. We thank Florian Waszak for a stimulating discussion that was instrumental in generating this line of research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nachshon Meiran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meiran, N., Pereg, M., Kessler, Y. et al. Reflexive activation of newly instructed stimulus–response rules: evidence from lateralized readiness potentials in no-go trials. Cogn Affect Behav Neurosci 15, 365–373 (2015). https://doi.org/10.3758/s13415-014-0321-8

Download citation

Keywords

  • Instructions
  • LRP
  • Intention-based reflexivity
  • Working memory
  • Automaticity