The role of the extended MNS in emotional and nonemotional judgments of human song

  • Lucy M. McGarry
  • Jaime A. Pineda
  • Frank A. Russo
Article

Abstract

In the present study, we examined the involvement of the extended mirror neuron system (MNS)—specifically, areas that have a strong functional connection to the core system itself—during emotional and nonemotional judgments about human song. We presented participants with audiovisual recordings of sung melodic intervals (two-tone sequences) and manipulated emotion and pitch judgments while keeping the stimuli identical. Mu event-related desynchronization (ERD) was measured as an index of MNS activity, and a source localization procedure was performed on the data to isolate the brain sources contributing to this ERD. We found that emotional judgments of human song led to greater amounts of ERD than did pitch distance judgments (nonemotional), as well as control judgments related to the singer’s hair, or pitch distance judgments about a synthetic tone sequence. Our findings support and expand recent research suggesting that the extended MNS is involved to a greater extent during emotional than during nonemotional perception of human action.

Keywords

Mirror neuron system Mu event-related desynchronization Emotion perception Action perception Superior temporal gyrus 

References

  1. Aragón, O. R., Sharer, E. A., Bargh, J. A., & Pineda, J. A. (2013). Modulations of mirroring activity by desire for social connection and relevance of movement. Social Cognitive and Affective Neuroscience. doi:10.1093/scan/nst172.PubMedGoogle Scholar
  2. Barraclough, N. E., Xiao, D., Baker, C. I., Oram, M. W., & Perrett, D. I. (2005). Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. Journal of Cognitive Neuroscience, 17, 377–391. doi:10.1162/0898929053279586 CrossRefPubMedGoogle Scholar
  3. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., … Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13, 400–404.Google Scholar
  4. Carr, L., Iacoboni, M., Dubeau, M.-C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences, 100, 5497–5502. doi:10.1073/pnas.0935845100 CrossRefGoogle Scholar
  5. Casasanto, D., & Dijkstra, K. (2010). Motor action and emotional memory. Cognition, 115, 179–185.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Chan, L., Livingstone, S., & Russo, F. A. (2013). Automatic facial mimicry of emotion during perception of song. Music Perception, 30, 361–367.CrossRefGoogle Scholar
  7. Chartrand, T., & Bargh, J. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910.CrossRefPubMedGoogle Scholar
  8. Cheng, Y., Chou, K.-H., Decety, J., Chen, I.-Y., Hung, D., Tzeng, O. J.-L., & Lin, C.-P. (2009). Sex differences in the neuroanatomy of human mirror-neuron system: A voxel-based morphometric investigation. Neuroscience, 158, 713–720. doi:10.1016/j.neuroscience.2008.10.026 CrossRefPubMedGoogle Scholar
  9. Cochin, S., Barthelemy, C., Lejeune, B., Roux, S., & Martineau, J. (1998). Perception of motion and qEEG activity in human adults. Electroencephalography and Clinical Neurophysiology, 107, 287–295.CrossRefPubMedGoogle Scholar
  10. Cross, E. S., Hamilton, A. F. D. C., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31, 1257–1267. doi:10.1016/j.neuroimage.2006.01.033 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9, 28–30. doi:10.1038/nn1611 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35, 607–614.CrossRefPubMedGoogle Scholar
  13. Davidson, R. J., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3, 11–21.CrossRefPubMedGoogle Scholar
  14. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi:10.1016/j.jneumeth.2003.10.009 CrossRefPubMedGoogle Scholar
  15. Delorme, A., & Makeig, S. (2013). EEGlab wiki. Retrieved July 1, 2014, from http://sccn.ucsd.edu/wiki/Main_Page
  16. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180. doi:10.1007/BF00230027 CrossRefPubMedGoogle Scholar
  17. Dimberg, U., Thunberg, M., & Elmehed, K. (2000). Unconscious facial reactions to emotional facial expressions. Psychological Science, 11, 86–89. doi:10.1111/1467-9280.00221 CrossRefPubMedGoogle Scholar
  18. Dinstein, I., Thomas, C., Behrmann, M., & Heeger, D. J. (2008). A mirror up to nature. Current Biology, 18, R13–R18.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Enticott, P. G., Johnston, P. J., Herring, S. E., Hoy, K. E., & Fitzgerald, P. B. (2008). Mirror neuron activation is associated with facial emotion processing. Neuropsychologia, 46, 2851–2854. doi:10.1016/j.neuropsychologia.2008.04.022 CrossRefPubMedGoogle Scholar
  20. Ferri, F., Ebisch, S. J. H., Costantini, M., Salone, A., Arciero, G., Mazzola, V., Ferro, F. M., … Gallese, V. (2013). Binding action and emotion in social understanding. PLoS ONE, 8, e54091. doi:10.1371/journal.pone.0054091
  21. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.CrossRefPubMedGoogle Scholar
  22. Gazzaniga, M. S. (1995). Principles of human brain organization derived from split-brain studies. Neuron, 14, 217–228.CrossRefPubMedGoogle Scholar
  23. Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16, 1824–1829. doi:10.1016/j.cub.2006.07.072 CrossRefPubMedGoogle Scholar
  24. George, M. S., Parekh, P. I., Rosinsky, N., Ketter, T. A., Kimbrell, T. A., Heilman, K. M., … Post, R. M. (1996). Understanding emotional prosody activates right hemisphere regions. Archives of Neurology, 53, 665–670. doi:10.1001/archneur.1996.00550070103017
  25. Grosbras, M.-H., & Paus, T. (2006). Brain networks involved in viewing angry hands or faces. Cerebral Cortex, 16, 1087–1096. doi:10.1093/cercor/bhj050 CrossRefPubMedGoogle Scholar
  26. Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., & Rizzolatti, G. (1998). Activation of human primary motor cortex during action observation: A neuromagnetic study. Proceedings of the National Academy of Sciences, 95, 15061–15065.CrossRefGoogle Scholar
  27. Harris, T., Harris, S., Rubin, J. S., & Howard, D. M. (1998). The voice clinic handbook. London, UK: Whurr.Google Scholar
  28. Hess, U., & Blairy, S. (2001). Facial mimicry and emotional contagion to dynamic emotional facial expressions and their influence on decoding accuracy. International Journal of Psychophysiology, 40, 129–141.CrossRefPubMedGoogle Scholar
  29. Iacoboni, M., Koski, L. M., Brass, M., Bekkering, H., Woods, R. P., Dubeau, M. C., … Rizzolatti, G. (2001). Reafferent copies of imitated actions in the right superior temporal cortex. Proceedings of the National Academy of Sciences, 98, 13995–13999.Google Scholar
  30. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79. doi:10.1371/journal.pbio.0030079 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Iidaka, T. (2012). The role of the superior temporal sulcus in face recognition and perception [in Japanese]. Brain and Nerve, 64, 737–742.PubMedGoogle Scholar
  32. Keysers, C., & Gazzola, V. (2009). Expanding the mirror: Vicarious activity for actions, emotions, and sensations. Current Opinion in Neurobiology, 19, 666–671. doi:10.1016/j.conb.2009.10.006 CrossRefPubMedGoogle Scholar
  33. Keysers, C., Kohler, E., Umiltà, M. A., Nanetti, L., Fogassi, L., & Gallese, V. (2003). Audiovisual mirror neurons and action recognition. Experimental Brain Research, 153, 628–636. doi:10.1007/s00221-003-1603-5 CrossRefPubMedGoogle Scholar
  34. Kreifelts, B., Ethofer, T., Shiozawa, T., Grodd, W., & Wildgruber, D. (2009). Cerebral representation of non-verbal emotional perception: fMRI reveals audiovisual integration area between voice-and face-sensitive regions in the superior temporal sulcus. Neuropsychologia, 47, 3059–3066.CrossRefPubMedGoogle Scholar
  35. LeDoux, J. E., & Phelps, E. A. (1993). Emotional networks in the brain. In M. Lewis, J. M. Haviland-Jones, & L. Feldman Barrett (Eds.), Handbook of emotions (pp. 159–179). New York, NY: Guilford Press.Google Scholar
  36. Leff, A. P., Schofield, T. M., Crinion, J. T., Seghier, M. L., Grogan, A., Green, D. W., & Price, C. J. (2009). The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: Evidence from 210 patients with stroke. Brain, 132, 3401–3410.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Lévêque, Y., & Schön, D. (2013). Listening to the human voice alters sensorimotor brain rhythms. PLoS ONE, 8, e80659. doi:10.1371/journal.pone.0080659 CrossRefPubMedCentralPubMedGoogle Scholar
  38. McGarry, L. M., & Russo, F. A. (2011). Mirroring in dance/movement therapy: Potential mechanisms behind empathy enhancement. Arts in Psychotherapy, 38, 178–184. doi:10.1016/j.aip.2011.04.005 CrossRefGoogle Scholar
  39. McGarry, L. M., Russo, F. A., Schalles, M. D., & Pineda, J. A. (2012). Audio-visual facilitation of the mu rhythm. Experimental Brain Research, 218, 527–538. doi:10.1007/s00221-012-3046-3 CrossRefPubMedGoogle Scholar
  40. Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48, 229–240.CrossRefGoogle Scholar
  41. Molenberghs, P., Brander, C., Mattingley, J. B., & Cunnington, R. (2010). The role of the superior temporal sulcus and the mirror neuron system in imitation. Human Brain Mapping, 31, 1316–1326. doi:10.1002/hbm.20938 CrossRefPubMedGoogle Scholar
  42. Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36, 341–349. doi:10.1016/j.neubiorev.2011.07.004 CrossRefPubMedGoogle Scholar
  43. Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons: From motion to “e”motion. Social Cognitive and Affective Neuroscience, 1, 235–241. doi:10.1093/scan/nsl029 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Moody, E. J., & McIntosh, D. N. (2011). Mimicry of dynamic emotional and motor-only stimuli. Social Psychological and Personality Science, 2, 679–686. doi:10.1177/1948550611406741 CrossRefGoogle Scholar
  45. Moore, A., Gorodnitsky, I., & Pineda, J. (2012). EEG mu component responses to viewing emotional faces. Behavioural Brain Research, 226, 309–316. doi:10.1016/j.bbr.2011.07.048 CrossRefPubMedGoogle Scholar
  46. Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756. doi:10.1016/j.cub.2010.02.045 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24, 190–198. doi:10.1016/j.cogbrainres.2005.01.014 CrossRefPubMedGoogle Scholar
  48. Overy, K., & Molnar-Szakacs, I. (2009). Being together in time: Musical experience and the mirror neuron system. Music Perception, 26, 489–504.CrossRefGoogle Scholar
  49. Perry, A., Troje, N. F., & Bentin, S. (2010). Exploring motor system contributions to the perception of social information: Evidence from EEG activity in the mu/alpha frequency range. Social Neuroscience, 5, 272–284. doi:10.1080/17470910903395767 CrossRefPubMedGoogle Scholar
  50. Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110, 1842–1857.CrossRefPubMedGoogle Scholar
  51. Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.”. Brain Research Reviews, 50, 57–68. doi:10.1016/j.brainresrev.2005.04.005 CrossRefPubMedGoogle Scholar
  52. Pineda, J. A. (2008). Sensorimotor cortex as a critical component of an “extended” mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral and Brain Functions, 4, 47. doi:10.1186/1744-9081-4-47 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Pineda, J. A., & Hecht, E. (2009). Mirroring and mu rhythm involvement in social cognition: Are there dissociable subcomponents of theory of mind ? Biological Psychology, 80, 306–314. doi:10.1016/j.biopsycho.2008.11.003 CrossRefPubMedGoogle Scholar
  54. Redcay, E. (2008). The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neuroscience and Biobehavioral Reviews, 32, 123–142. doi:10.1016/j.neubiorev.2007.06.004 CrossRefPubMedGoogle Scholar
  55. Riskind, J. H., & Gotay, C. C. (1982). Physical posture: Could it have regulatory or feedback effects on motivation and emotion? Motivation and Emotion, 6, 273–298. doi:10.1007/BF00992249 CrossRefGoogle Scholar
  56. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi:10.1146/annurev.neuro.27.070203.144230 CrossRefPubMedGoogle Scholar
  57. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.CrossRefPubMedGoogle Scholar
  58. Russo, F. A., Sandstrom, G. M., & Maksimowski, M. (2011). Mouth versus eyes: Gaze fixation during perception of sung interval size. Psychomusicology: Music, Mind and Brain, 21, 98–107. doi:10.1037/h0094007 CrossRefGoogle Scholar
  59. Russo, F. A., & Thompson, W. F. (2005). The subjective size of melodic intervals over a two-octave range. Psychonomic Bulletin & Review, 12, 1068–1075. doi:10.3758/BF03206445 CrossRefGoogle Scholar
  60. Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., … Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22, 2917–2926.Google Scholar
  61. Schellenberg, E. G., & Trehub, S. E. (1996). Children’s discrimination of melodic intervals. Developmental Psychology, 32, 1039–1050. doi:10.1037/0012-1649.32.6.1039 CrossRefGoogle Scholar
  62. Scherer, K. R., & Oshinsky, J. S. (1977). Cue utilization in emotion attribution from auditory stimuli. Motivation and Emotion, 1, 331–346.CrossRefGoogle Scholar
  63. Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10, 24–30. doi:10.1016/j.tics.2005.11.009 CrossRefPubMedGoogle Scholar
  64. Schwartz, G. E., Davidson, R. J., & Maer, F. (1975). Right hemisphere lateralization for emotion in the human brain: Interactions with cognition. Science, 190, 286–288.CrossRefPubMedGoogle Scholar
  65. Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303, 1157–1162. doi:10.1126/science.1093535 CrossRefPubMedGoogle Scholar
  66. Talmi, D., Luk, B. T. C., McGarry, L. M., & Moscovitch, M. (2007). The contribution of relatedness and distinctiveness to emotionally-enhanced memory. Journal of Memory and Language, 56, 555–574. doi:10.1016/j.jml.2007.01.002 CrossRefGoogle Scholar
  67. Thompson, W. F., Russo, F. A., & Quinto, L. (2008). Audio–visual integration of emotional cues in song. Cognition and Emotion, 22, 1457–1470. doi:10.1080/02699930701813974 CrossRefGoogle Scholar
  68. Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing: A neurophysiological study. Neuron, 31, 155–165. doi:10.1016/S0896-6273(01)00337-3 CrossRefPubMedGoogle Scholar
  69. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531.CrossRefPubMedGoogle Scholar
  70. Warren, J. E., Sauter, D. A., Eisner, F., Wiland, J., Dresner, M. A., Wise, R. J. S., Rosen, S., … Scott, S. K. (2006). Positive emotions preferentially engage an auditory–motor “mirror” system. Journal of Neuroscience, 26, 13067–13075. doi:10.1523/JNEUROSCI.3907-06.2006
  71. Watson, R., Latinus, M., Charest, I., Crabbe, F., & Belin, P. (2014). People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex, 50, 125–136. doi:10.1016/j.cortex.2013.07.011 CrossRefPubMedCentralPubMedGoogle Scholar
  72. Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron, 40, 655–664. doi:10.1016/S0896-6273(03)00679-2 CrossRefPubMedGoogle Scholar
  73. Williams, J. H. G., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and “mirror neuron” functioning in autistic spectrum disorder. Neuropsychologia, 44, 610–621. doi:10.1016/j.neuropsychologia.2005.06.010 CrossRefPubMedGoogle Scholar
  74. Zaki, J., Weber, J., Bolger, N., & Ochsner, K. (2009). The neural bases of empathic accuracy. Proceedings of the National Academy of Sciences, 106, 11382–11387. doi:10.1073/pnas.0902666106 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Lucy M. McGarry
    • 1
    • 3
  • Jaime A. Pineda
    • 2
  • Frank A. Russo
    • 1
  1. 1.Ryerson UniversityTorontoCanada
  2. 2.University of California, San DiegoLa JollaUSA
  3. 3.Psychology DepartmentRyerson UniversityTorontoCanada

Personalised recommendations