Skip to main content

Weak ventral striatal responses to monetary outcomes predict an unwillingness to resist cigarette smoking

Abstract

As a group, cigarette smokers exhibit blunted subjective, behavioral, and neurobiological responses to nondrug incentives and rewards, relative to nonsmokers. Findings from recent studies suggest, however, that there are large individual differences in the devaluation of nondrug rewards among smokers. Moreover, this variability appears to have significant clinical implications, since reduced sensitivity to nondrug rewards is associated with poorer smoking cessation outcomes. Currently, little is known about the neurobiological mechanisms that underlie these individual differences in the responsiveness to nondrug rewards. Here, we tested the hypothesis that individual variability in reward devaluation among smokers is linked to the functioning of the striatum. Specifically, functional magnetic resonance imaging was used to examine variability in the neural response to monetary outcomes in nicotine-deprived smokers anticipating an opportunity to smoke—circumstances found to heighten the devaluation of nondrug rewards by smokers in prior work. We also investigated whether individual differences in reward-related brain activity in those expecting to have access to cigarettes were associated with the degree to which the same individuals subsequently were willing to resist smoking in order to earn additional money. Our key finding was that deprived smokers who exhibited the weakest response to rewards (i.e., monetary gains) in the ventral striatum were least willing to refrain from smoking for monetary reinforcement. These results provide evidence that outcome-related signals in the ventral striatum serve as a marker for clinically meaningful individual differences in reward-motivated behavior among nicotine-deprived smokers.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. al-Adawi, S., & Powell, J. (1997). The influence of smoking on reward responsiveness and cognitive functions: A natural experiment. Addiction, 92(12), 1773–1782.

    PubMed  Article  Google Scholar 

  2. Bogdan, R., & Pizzagalli, D. A. (2006). Acute stress reduces reward responsiveness: Implications for depression. Biological Psychiatry, 60(10), 1147–1154. doi:10.1016/j.biopsych.2006.03.037

    PubMed Central  PubMed  Article  Google Scholar 

  3. Broos, N., Schmaal, L., Wiskerke, J., Kostelijk, L., Lam, T., Stoop, N., & Goudriaan, A. E. (2012). The relationship between impulsive choice and impulsive action: A cross-species translational study. PloS One, 7(5), e36781. doi:10.1371/journal.pone.0036781

    PubMed Central  PubMed  Article  Google Scholar 

  4. Buhler, M., Vollstadt-Klein, S., Kobiella, A., Budde, H., Reed, L. J., Braus, D. F., & Smolka, M. N. (2010). Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biological Psychiatry, 67(8), 745–752. doi:10.1016/j.biopsych.2009.10.029

    PubMed  Article  Google Scholar 

  5. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  6. Cousijn, J., Wiers, R. W., Ridderinkhof, K. R., van den Brink, W., Veltman, D. J., Porrino, L. J., & Goudriaan, A. E. (2013). Individual differences in decision making and reward processing predict changes in cannabis use: A prospective functional magnetic resonance imaging study. Addiction Biology, 18(6), 1013–1023. doi:10.1111/j.1369-1600.2012.00498.x

    PubMed  Article  Google Scholar 

  7. Cox, L. S., Tiffany, S. T., & Christen, A. G. (2001). Evaluation of the brief questionnaire of smoking urges (QSU-brief) in laboratory and clinical settings. Nicotine & Tobacco Research, 3(1), 7–16.

    Article  Google Scholar 

  8. Dagher, A., Bleicher, C., Aston, J. A., Gunn, R. N., Clarke, P. B., & Cumming, P. (2001). Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse, 42(1), 48–53. doi:10.1002/syn.1098

    PubMed  Article  Google Scholar 

  9. Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88. doi:10.1196/annals.1390.002

    PubMed  Article  Google Scholar 

  10. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84(6), 3072–3077.

    PubMed  Google Scholar 

  11. Falk, E. B., Berkman, E. T., Whalen, D., & Lieberman, M. D. (2011). Neural activity during health messaging predicts reductions in smoking above and beyond self-report. Health Psychology, 30(2), 177–185. doi:10.1037/a0022259

    PubMed Central  PubMed  Article  Google Scholar 

  12. Fareri, D. S., Niznikiewicz, M. A., Lee, V. K., & Delgado, M. R. (2012). Social network modulation of reward-related signals. Journal of Neuroscience, 32(26), 9045–9052. doi:10.1523/jneurosci.0610-12.2012

    PubMed Central  PubMed  Article  Google Scholar 

  13. Froeliger, B., Kozink, R. V., Rose, J. E., Behm, F. M., Salley, A. N., & McClernon, F. J. (2010). Hippocampal and striatal gray matter volume are associated with a smoking cessation treatment outcome: Results of an exploratory voxel-based morphometric analysis. Psychopharmacology, 210(4), 577–583. doi:10.1007/s00213-010-1862-3

    PubMed  Article  Google Scholar 

  14. George, O., & Koob, G. F. (2010). Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neuroscience and Biobehavioral Reviews, 35(2), 232–247. doi:10.1016/j.neubiorev.2010.05.002

    PubMed Central  PubMed  Article  Google Scholar 

  15. Gomez, F. (2001). Induction of conditioned taste aversion with a self-administered substance in rats. Brain Research. Brain Research Protocols, 8(2), 137–142.

    PubMed  Article  Google Scholar 

  16. Gomez, F. (2002). Conditioned saccharin aversion induced by self-administered cocaine negatively correlates with the rate of cocaine self-administration in rats. Brain Research, 946(2), 214–220.

    PubMed  Article  Google Scholar 

  17. Grigson, P. S. (1997). Conditioned taste aversions and drugs of abuse: A reinterpretation. Behavioral Neuroscience, 111(1), 129–136.

    PubMed  Article  Google Scholar 

  18. Grigson, P. S., & Hajnal, A. (2007). Once is too much: Conditioned changes in accumbens dopamine following a single saccharin-morphine pairing. Behavioral Neuroscience, 121(6), 1234–1242. doi:10.1037/0735-7044.121.6.1234

    PubMed  Article  Google Scholar 

  19. Grigson, P. S., & Twining, R. C. (2002). Cocaine-induced suppression of saccharin intake: A model of drug-induced devaluation of natural rewards. Behavioral Neuroscience, 116(2), 321–333.

    PubMed  Article  Google Scholar 

  20. Grigson, P. S., Twining, R. C., Freet, C. S., Wheeler, R. A., & Geddes, R. I. (2009). Drug-induced suppression of conditioned stimulus intake: Reward, aversion, and addiction. In S. Reilly & T. R. Schachtman (Eds.), Conditioned taste aversion: Behavioral and neural processes. New York: Oxford University Press.

    Google Scholar 

  21. Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26. doi:10.1038/npp.2009.129

    PubMed Central  PubMed  Article  Google Scholar 

  22. Hariri, A. R., Brown, S. M., Williamson, D. E., Flory, J. D., de Wit, H., & Manuck, S. B. (2006). Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. Journal of Neuroscience, 26(51), 13213–13217. doi:10.1523/jneurosci.3446-06.2006

    PubMed  Article  Google Scholar 

  23. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The fagerstrom test for nicotine dependence: A revision of the fagerstrom tolerance questionnaire. British Journal of Addiction, 86(9), 1119–1127.

    PubMed  Article  Google Scholar 

  24. Hughes, J. R., & Hatsukami, D. K. (1986). Signs and symptoms of tobacco withdrawal. Archives of General Psychiatry, 43(3), 289–294.

    PubMed  Article  Google Scholar 

  25. Hughes, J. R., & Hatsukami, D. K. (1998). Errors in using tobacco withdrawal scale. Tobacco Control, 7(1), 92–93.

    PubMed Central  PubMed  Article  Google Scholar 

  26. Janes, A. C., Pizzagalli, D. A., Richardt, S., deB Frederick, B., Chuzi, S., Pachas, G., & Kaufman, M. J. (2010). Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biological Psychiatry, 67(8), 722–729. doi:10.1016/j.biopsych.2009.12.034

    PubMed Central  PubMed  Article  Google Scholar 

  27. Juliano, L. M., & Brandon, T. H. (1998). Reactivity to instructed smoking availability and environmental cues: Evidence with urge and reaction time. Experimental and Clinical Psychopharmacology, 6(1), 45–53.

    PubMed  Article  Google Scholar 

  28. Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. The American Journal of Psychiatry, 162(8), 1403–1413. doi:10.1176/appi.ajp.162.8.1403

    PubMed  Article  Google Scholar 

  29. Kobiella, A., Ripke, S., Kroemer, N. B., Vollmert, C., Vollstadt-Klein, S., Ulshofer, D. E., & Smolka, M. N. (2013). Acute and chronic nicotine effects on behaviour and brain activation during intertemporal decision making. Addiction Biology. doi:10.1111/adb.12057

    Google Scholar 

  30. Lam, C. Y., Robinson, J. D., Versace, F., Minnix, J. A., Cui, Y., Carter, B. L., & Cinciripini, P. M. (2012). Affective reactivity during smoking cessation of never-quitters as compared with that of abstainers, relapsers, and continuing smokers. Experimental and Clinical Psychopharmacology, 20(2), 139–150. doi:10.1037/a0026109

    PubMed Central  PubMed  Article  Google Scholar 

  31. Lighthall, N. R., Sakaki, M., Vasunilashorn, S., Nga, L., Somayajula, S., Chen, E. Y., & Mather, M. (2012). Gender differences in reward-related decision processing under stress. Social Cognitive and Affective Neuroscience, 7(4), 476–484. doi:10.1093/scan/nsr026

    PubMed Central  PubMed  Article  Google Scholar 

  32. Luijten, M., O'Connor, D. A., Rossiter, S., Franken, I. H., & Hester, R. (2013). Effects of reward and punishment on brain activations associated with inhibitory control in cigarette smokers. Addiction. doi:10.1111/add.12276

    PubMed  Google Scholar 

  33. Luo, S., Ainslie, G., Giragosian, L., & Monterosso, J. R. (2011). Striatal hyposensitivity to delayed rewards among cigarette smokers. Drug and Alcohol Dependence, 116(1–3), 18–23. doi:10.1016/j.drugalcdep.2010.11.012

    PubMed Central  PubMed  Article  Google Scholar 

  34. MacKillop, J., Amlung, M. T., Wier, L. M., David, S. P., Ray, L. A., Bickel, W. K., & Sweet, L. H. (2012). The neuroeconomics of nicotine dependence: A preliminary functional magnetic resonance imaging study of delay discounting of monetary and cigarette rewards in smokers. Psychiatry Research, 202(1), 20–29. doi:10.1016/j.pscychresns.2011.10.003

    PubMed Central  PubMed  Article  Google Scholar 

  35. Martinez, D., Carpenter, K. M., Liu, F., Slifstein, M., Broft, A., Friedman, A. C., & Nunes, E. (2011). Imaging dopamine transmission in cocaine dependence: Link between neurochemistry and response to treatment. The American Journal of Psychiatry, 168(6), 634–641. doi:10.1176/appi.ajp.2010.10050748

    PubMed Central  PubMed  Article  Google Scholar 

  36. Martin-Soelch, C., Missimer, J., Leenders, K. L., & Schultz, W. (2003). Neural activity related to the processing of increasing monetary reward in smokers and nonsmokers. European Journal of Neuroscience, 18(3), 680–688.

    PubMed  Article  Google Scholar 

  37. Martin-Solch, C., Magyar, S., Kunig, G., Missimer, J., Schultz, W., & Leenders, K. L. (2001). Changes in brain activation associated with reward processing in smokers and nonsmokers. A positron emission tomography study. Experimental Brain Research, 139(3), 278–286.

    PubMed  Article  Google Scholar 

  38. McKee, S. A. (2009). Developing human laboratory models of smoking lapse behavior for medication screening. Addiction Biology, 14(1), 99–107. doi:10.1111/j.1369-1600.2008.00135.x

    PubMed Central  PubMed  Article  Google Scholar 

  39. McKee, S. A., Krishnan-Sarin, S., Shi, J., Mase, T., & O'Malley, S. S. (2006). Modeling the effect of alcohol on smoking lapse behavior. Psychopharmacology, 189(2), 201–210. doi:10.1007/s00213-006-0551-8

    PubMed Central  PubMed  Article  Google Scholar 

  40. McKee, S. A., Weinberger, A. H., Shi, J., Tetrault, J., & Coppola, S. (2012). Developing and validating a human laboratory model to screen medications for smoking cessation. Nicotine & Tobacco Research. doi:10.1093/ntr/nts090

    Google Scholar 

  41. Mueller, E. T., Landes, R. D., Kowal, B. P., Yi, R., Stitzer, M. L., Burnett, C. A., & Bickel, W. K. (2009). Delay of smoking gratification as a laboratory model of relapse: Effects of incentives for not smoking, and relationship with measures of executive function. Behavioral Pharmacology, 20(5–6), 461–473. doi:10.1097/FBP.0b013e3283305ec7

    Article  Google Scholar 

  42. Muller, K. U., Mennigen, E., Ripke, S., Banaschewski, T., Barker, G. J., Buchel, C., . . . Smolka, M. N. (2013). Altered Reward Processing in Adolescents With Prenatal Exposure to Maternal Cigarette Smoking. JAMA Psychiatry, 1-10. doi: 10.1001/jamapsychiatry.2013.44

  43. Nees, F., Witt, S. H., Lourdusamy, A., Vollstadt-Klein, S., Steiner, S., Poustka, L., & Flor, H. (2013). Genetic risk for nicotine dependence in the cholinergic system and activation of the brain reward system in healthy adolescents. Neuropsychopharmacology. doi:10.1038/npp.2013.131

    PubMed Central  Google Scholar 

  44. O'Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14(6), 769–776. doi:10.1016/j.conb.2004.10.016

    PubMed  Article  Google Scholar 

  45. Ossewaarde, L., Qin, S., Van Marle, H. J., van Wingen, G. A., Fernandez, G., & Hermans, E. J. (2011). Stress-induced reduction in reward-related prefrontal cortex function. NeuroImage, 55(1), 345–352. doi:10.1016/j.neuroimage.2010.11.068

    PubMed  Article  Google Scholar 

  46. Peters, J., Bromberg, U., Schneider, S., Brassen, S., Menz, M., Banaschewski, T., & Buchel, C. (2011). Lower ventral striatal activation during reward anticipation in adolescent smokers. The American Journal of Psychiatry, 168(5), 540–549. doi:10.1176/appi.ajp.2010.10071024

    PubMed  Article  Google Scholar 

  47. Piasecki, T. M. (2006). Relapse to smoking. Clinical Psychology Review, 26(2), 196–215. doi:10.1016/j.cpr.2005.11.007

    PubMed  Article  Google Scholar 

  48. Porcelli, A. J., Lewis, A. H., & Delgado, M. R. (2012). Acute stress influences neural circuits of reward processing. Frontiers in Neuroscience, 6, 157. doi:10.3389/fnins.2012.00157

    PubMed Central  PubMed  Article  Google Scholar 

  49. Radloff, L. S. (1977). The CES-D Scale. Applied Psychological Measurement, 1(3), 385–401.

    Article  Google Scholar 

  50. Rose, E. J., Ross, T. J., Salmeron, B. J., Lee, M., Shakleya, D. M., Huestis, M., & Stein, E. A. (2012). Chronic exposure to nicotine is associated with reduced reward-related activity in the striatum but not the midbrain. Biological Psychiatry, 71(3), 206–213. doi:10.1016/j.biopsych.2011.09.013

    PubMed Central  PubMed  Article  Google Scholar 

  51. Sayette, M. A., Loewenstein, G., Griffin, K. M., & Black, J. J. (2008). Exploring the cold-to-hot empathy gap in smokers. Psychological Science, 19(9), 926–932. doi:10.1111/j.1467-9280.2008.02178.x

    PubMed Central  PubMed  Article  Google Scholar 

  52. Schneider, S., Peters, J., Bromberg, U., Brassen, S., Miedl, S. F., Banaschewski, T., & Buchel, C. (2012). Risk taking and the adolescent reward system: A potential common link to substance abuse. The American Journal of Psychiatry, 169(1), 39–46. doi:10.1176/appi.ajp.2011.11030489

    PubMed  Article  Google Scholar 

  53. Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex, 10(3), 272–284.

    PubMed  Article  Google Scholar 

  54. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 20), 22–57.

    PubMed  Google Scholar 

  55. Sheffer, C., Mackillop, J., McGeary, J., Landes, R., Carter, L., Yi, R., & Bickel, W. (2012). Delay discounting, locus of control, and cognitive impulsiveness independently predict tobacco dependence treatment outcomes in a highly dependent, lower socioeconomic group of smokers. American Journal on Addictions, 21(3), 221–232. doi:10.1111/j.1521-0391.2012.00224.x

    PubMed Central  PubMed  Article  Google Scholar 

  56. Stitzer, M., & Petry, N. (2006). Contingency management for treatment of substance abuse. Annual Review of Clinical Psychology, 2, 411–434. doi:10.1146/annurev.clinpsy.2.022305.095219

    PubMed  Article  Google Scholar 

  57. Sweitzer, M. M., Donny, E. C., & Hariri, A. R. (2012). Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction. Drug and Alcohol Dependence, 123(Suppl 1), S59–S71. doi:10.1016/j.drugalcdep.2012.01.017

    PubMed  Article  Google Scholar 

  58. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: An approach to medical cerebral imaging. Stuttgart, Germany: Thieme.

    Google Scholar 

  59. Twining, R. C., Bolan, M., & Grigson, P. S. (2009). Yoked delivery of cocaine is aversive and protects against the motivation for drug in rats. Behavioral Neuroscience, 123(4), 913–925. doi:10.1037/a0016498

    PubMed  Article  Google Scholar 

  60. Versace, F., Lam, C. Y., Engelmann, J. M., Robinson, J. D., Minnix, J. A., Brown, V. L., & Cinciripini, P. M. (2012). Beyond cue reactivity: Blunted brain responses to pleasant stimuli predict long-term smoking abstinence. Addiction Biology, 17(6), 991–1000. doi:10.1111/j.1369-1600.2011.00372.x

    PubMed Central  PubMed  Article  Google Scholar 

  61. Wang, G. J., Smith, L., Volkow, N. D., Telang, F., Logan, J., Tomasi, D., & Fowler, J. S. (2012). Decreased dopamine activity predicts relapse in methamphetamine abusers. Molecular Psychiatry, 17(9), 918–925. doi:10.1038/mp.2011.86

    PubMed Central  PubMed  Article  Google Scholar 

  62. Wheeler, R. A., Aragona, B. J., Fuhrmann, K. A., Jones, J. L., Day, J. J., Cacciapaglia, F., & Carelli, R. M. (2011). Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state. Biological Psychiatry, 69(11), 1067–1074. doi:10.1016/j.biopsych.2011.02.014

    PubMed Central  PubMed  Article  Google Scholar 

  63. Wheeler, R. A., Twining, R. C., Jones, J. L., Slater, J. M., Grigson, P. S., & Carelli, R. M. (2008). Behavioral and electrophysiological indices of negative affect predict cocaine self-administration. Neuron, 57(5), 774–785. doi:10.1016/j.neuron.2008.01.024

    PubMed  Article  Google Scholar 

  64. Wilson, S. J., Sayette, M. A., Delgado, M. R., & Fiez, J. A. (2005). Instructed smoking expectancy modulates cue-elicited neural activity: A preliminary study. Nicotine and Tobacco Research, 7(4), 637–645.

    PubMed Central  PubMed  Article  Google Scholar 

  65. Wilson, S. J., Sayette, M. A., Delgado, M. R., & Fiez, J. A. (2008). Effect of smoking opportunity on responses to monetary gain and loss in the caudate nucleus. Journal of Abnormal Psychology, 117(2), 428–434. doi:10.1037/0021-843X.117.2.428

    PubMed Central  PubMed  Article  Google Scholar 

  66. Wilson, S. J., Sayette, M. A., & Fiez, J. A. (2004). Prefrontal responses to drug cues: A neurocognitive analysis. Nature Neuroscience, 7(3), 211–214.

    PubMed Central  PubMed  Article  Google Scholar 

  67. Wilson, S. J., Sayette, M. A., & Fiez, J. A. (2012). Quitting-unmotivated and quitting-motivated cigarette smokers exhibit different patterns of cue-elicited brain activation when anticipating an opportunity to smoke. Journal of Abnormal Psychology, 121(1), 198–211. doi:10.1037/a0025112

    PubMed Central  PubMed  Article  Google Scholar 

  68. Wilson, S. J., Smyth, J. M., & MacLean, R. R. (2014). Integrating ecological momentary assessment and functional brain imaging methods: New avenues for studying and treating tobacco dependence. Nicotine & Tobacco Research doi:10.1093/ntr/ntt129

Download references

Acknowledgments

Funding for this study was provided by NIDA Grant R03DA029675. Dr. Wilson’s research is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under BIRCWH award number K12HD055882, “Career Development Program in Women’s Health Research at Penn State.” The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We thank Theresa McKim and the staff of the Penn State Smoking Research Lab for their assistance with data collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Wilson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilson, S.J., Delgado, M.R., McKee, S.A. et al. Weak ventral striatal responses to monetary outcomes predict an unwillingness to resist cigarette smoking. Cogn Affect Behav Neurosci 14, 1196–1207 (2014). https://doi.org/10.3758/s13415-014-0285-8

Download citation

Keywords

  • fMRI
  • Individual differences
  • Relapse
  • Reward
  • Smoking
  • Striatum