Cognitive, Affective, & Behavioral Neuroscience

, Volume 14, Issue 3, pp 1061–1076 | Cite as

Beauty is in the ease of the beholding: A neurophysiological test of the averageness theory of facial attractiveness

  • Logan T. TrujilloEmail author
  • Jessica M. Jankowitsch
  • Judith H. Langlois


Hundreds of studies have shown that people prefer attractive over unattractive faces. But what is an attractive face, and why is it preferred? Averageness theory claims that faces are perceived as being attractive when their facial configuration approximates the mathematical average facial configuration of the population. Conversely, faces that deviate from this average configuration are perceived as being unattractive. The theory predicts that both attractive and mathematically averaged faces should be processed more fluently than unattractive faces, whereas the averaged faces should be processed marginally more fluently than the attractive faces. We compared neurocognitive and behavioral responses to attractive, unattractive, and averaged human faces to test these predictions. We recorded event-related potentials (ERPs) and reaction times (RTs) from 48 adults while they discriminated between human and chimpanzee faces. The participants categorized averaged and high-attractive faces as being “human” faster than low-attractive faces. The posterior N170 (150–225 ms) face-evoked ERP component was smaller in response to high-attractive and averaged faces than to low-attractive faces. Single-trial electroencephalographic analysis indicated that this reduced ERP response arose from the engagement of fewer neural resources, and not from a change in the temporal consistency of how those resources were engaged. These findings provide novel evidence that faces are perceived as being attractive when they approximate a facial configuration close to the population average, and they suggest that processing fluency underlies preferences for attractive faces.


Facial attractiveness Averaging Event-related potentials Visual cortex 


Author note

We thank Arian Mobasser, Stevie Schein, and Erin Anderson for assistance with the data collection. We thank Connor Principe and three anonymous reviewers for comments on earlier drafts of the manuscript. This research was supported by the National Institutes of Health [Grant No. HD021332 to J.H.L.; Grant No. 5T32MH065728-08 through the Texas Consortium in Behavioral Neuroscience Diversity Training Program to L.T.T.].

Supplementary material

13415_2013_230_MOESM1_ESM.doc (900 kb)
ESM 1 (DOC 899 doc)


  1. Alley, T. R., & Cunningham, M. R. (1991). Averaged faces are attractive, but very attractive faces are not average. Psychological Science, 2, 123–125.Google Scholar
  2. Apicella, C. L., Little, A. C., & Marlowe, F. W. (2007). Facial averageness and attractiveness in an isolated population of hunter-gatherers. Perception, 36, 1813–1820.PubMedGoogle Scholar
  3. Batty, M., & Taylor, M. J. (2003). Early processing of the six basic facial emotional expressions. Cognitive Brain Research, 17, 613–620.PubMedGoogle Scholar
  4. Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, C. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565.PubMedCentralPubMedGoogle Scholar
  5. Blackman, A. R. (1972). Stimulus probability and choice reaction time. Perception & Psychophysics, 12, 146–150.Google Scholar
  6. Blau, V. C., Maurer, U., Tottenham, N., & McCandliss, B. D. (2007). The face-specific N170 component is modulated by emotional facial expression. Behavioral and Brain Functions, 3, 7. doi: 10.1186/1744-9081-3-7 PubMedCentralPubMedGoogle Scholar
  7. Bronstad, P. M., Langlois, J. H., & Russell, R. (2008). Computational models of facial attractiveness judgments. Perception, 37, 126–142.PubMedGoogle Scholar
  8. Busey, T. A., & Vanderkolk, J. R. (2005). Behavioral and electrophysiological evidence for configural processing in fingerprint experts. Vision Research, 45, 431–448.PubMedGoogle Scholar
  9. Cunningham, M. R., Barbee, A. P., & Pike, C. L. (1990). What do women want? Facialmetric assessment of multiple motives in the perception of male facial physical attractiveness. Journal of Personality and Social Psychology, 59, 61–72.PubMedGoogle Scholar
  10. Deffke, I., Sander, T., Heidenreich, J., Sommer, W., Curio, G., Trahms, L., & Lueschow, A. (2007). MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus. NeuroImage, 35, 1495–1501. doi: 10.1016/j.neuroimage.2007.01.034 PubMedGoogle Scholar
  11. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009 PubMedGoogle Scholar
  12. Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115, 107–117. doi: 10.1037/0096-3445.115.2.107 Google Scholar
  13. Fabre-Thorpe, M., Delorme, A., Marlot, C., & Thorpe, S. (2001). A limit to the speed of processing in ultra-rapid visual categorization of novel scenes. Journal of Cognitive Neuroscience, 13, 171–180.PubMedGoogle Scholar
  14. Fink, B., & Penton-Voak, I. (2002). Evolutionary psychology of facial attractiveness. Current Directions on Psychological Science, 11, 154–158. doi: 10.1111/1467-8721.00190 Google Scholar
  15. Fink, B., Neave, N., Manning, J. T., & Grammer, K. (2006). Facial symmetry and judgments of attractiveness, health and personality. Personality and Individual Differences, 41, 491–499.Google Scholar
  16. Gardiner, J. C., Luo, Z., & Roman, L. A. (2009). Fixed effects, random effects and GEE: What are the differences? Statistics in Medicine, 28, 221–239. doi: 10.1002/sim.3478 PubMedGoogle Scholar
  17. Ghisletta, P., & Spini, D. (2004). An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. Journal of Educational and Behavioral Statistics, 29, 421–437.Google Scholar
  18. Gratton, G., Kramer, A. F., Coles, M. G. H., & Donchin, E. (1989). Simulation studies of latency measures of components of the event-related brain potential. Psychophysiology, 26, 233–248.PubMedGoogle Scholar
  19. Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95–112. doi: 10.1007/BF02289823 Google Scholar
  20. Griffin, A. M., & Langlois, J. H. (2006). Stereotype directionality and attractiveness stereotyping: Is beauty good or is ugly bad? Social Cognition, 24, 187–206.PubMedCentralPubMedGoogle Scholar
  21. Gruber, W. R., Klimesch, W., Sauseng, P., & Doppelmayr, M. (2005). Alpha phase synchronization predicts P1 and N1 latency and amplitude size. Cerebral Cortex, 15, 371–377.PubMedGoogle Scholar
  22. Halgren, E., Raji, T., Marinkovic, K., Jousmäki, V., & Hari, R. (2000). Cognitive response profile of the human fusiform face area as determined by MEG. Cerebral Cortex, 10, 69–81.PubMedGoogle Scholar
  23. Halit, H., de Haan, M., & Johnson, M. H. (2000). Modulation of event-related potentials by prototypical and atypical faces. NeuroReport, 11, 1871–1875.PubMedGoogle Scholar
  24. Hamermesh, D. S. (2011). Beauty pays: Why attractive people are more successful. Princeton: Princeton University Press.Google Scholar
  25. Harmon-Jones, E., & Allen, J. J. B. (2001). The role of affect in the mere exposure effect: Evidence from psychophysiological and individual difference approaches. Personality and Social Psychology Bulletin, 27, 889–898.Google Scholar
  26. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223–233. doi: 10.1016/S1364-6613(00)01482-0 PubMedGoogle Scholar
  27. He, P., Wilson, G., & Russell, C. (2004). Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Medical and Biological Engineering and Computing, 42, 407–412.PubMedGoogle Scholar
  28. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statisitics, 6, 65–70.Google Scholar
  29. Hönekopp, J. (2006). Once more: Is beauty in the eye of the beholder? Relative contributions of private and shared taste to judgments of facial attractiveness. Journal of Experimental Psychology: Human Perception and Performance, 32, 199–209. doi: 10.1037/0096-1523.32.2.199 PubMedGoogle Scholar
  30. Hoss, R. A., Ramsey, J. L., Griffin, A. M., & Langlois, J. H. (2005). The role of facial attractiveness and facial masculinity/femininity in sex classification of faces. Perception, 34, 1459–1474.PubMedCentralPubMedGoogle Scholar
  31. Itier, R. J., & Taylor, M. J. (2002). Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: A repetition study using ERPs. NeuroImage, 15, 353–373.PubMedGoogle Scholar
  32. Itier, R. J., & Taylor, M. J. (2004a). Effects of repetition learning on upright, inverted, and contrast-reversed face processing using ERPs. NeuroImage, 21, 1518–1532.PubMedGoogle Scholar
  33. Itier, R. J., & Taylor, M. J. (2004b). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral Cortex, 14, 132–142.PubMedGoogle Scholar
  34. Jacques, C., & Rossion, B. (2007). Early electrophysiological responses to multiple face orientations correlate with individual discrimination performance in humans. NeuroImage, 36, 863–876.PubMedGoogle Scholar
  35. Jáskowski, P., & Verleger, R. (2000). An evaluation of methods for single-trial estimation of P3 latency. Psychophysiology, 37, 153–162. doi: 10.1111/1469-8986.3720153 PubMedGoogle Scholar
  36. Jeffreys, D. A. (1989). A face-responsive potential recorded from the human scalp. Experimental Brain Research, 78, 193–202.PubMedGoogle Scholar
  37. Jeffreys, D. A. (1996). Evoked studies of face and object processing. Visual Cognition, 6, 1–38.Google Scholar
  38. Joyce, C., & Rossion, B. (2005). The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site. Clinical Neurophysiology, 116, 2613–2631.PubMedGoogle Scholar
  39. Judge, T. A., Hurst, C., & Simon, L. S. (2009). Does it pay to be smart, attractive, or confident (or all three)? Relationships among general mental ability, physical attractiveness, core self-evaluations, and income. Journal of Applied Psychology, 94, 742–755. doi: 10.1037/a0015497 PubMedGoogle Scholar
  40. Junghöfer, M., Elbert, T., Tucker, D. M., & Braun, C. (1999). The polar average reference effect: A bias in estimating the head surface integral in EEG recording. Clinical Neurophysiology, 110, 1149–1155.PubMedGoogle Scholar
  41. Kalick, S. M., Zebrowitz, L. A., Langlois, J. H., & Johnson, R. M. (1998). Does human facial attractiveness honestly advertise health? Psychological Science, 9, 8–13.Google Scholar
  42. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.PubMedGoogle Scholar
  43. Klimesch, W., Schack, B., Schabus, M., Doppelmayr, M., Gruber, W., & Sauseng, P. (2004). Phase-locked alpha and theta oscillations generate the P1–N1 complex and are related to memory performance. Cognitive Brain Research, 19, 302–316.PubMedGoogle Scholar
  44. Komatsu, L. K. (1992). Recent views of conceptual structure. Psychological Bulletin, 112, 500–526. doi: 10.1037/0033-2909.112.3.500 Google Scholar
  45. Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological Science, 1, 115–121.Google Scholar
  46. Langlois, J. H., Roggman, L. A., Casey, R. J., & Ritter, J. M. (1987). Infant preferences for attractive face: Rudiments of a stereotype? Developmental Psychology, 23, 363–369.Google Scholar
  47. Langlois, J. H., Roggman, L. A., & Rieser-Danner, L. A. (1990). Infants’ differential social responses to attractive and unattractive faces. Developmental Psychology, 26, 153–159.Google Scholar
  48. Langlois, J. H., Roggman, L. A., & Musselman, L. (1994). What is average and what is not average about attractive faces? Psychological Science, 5, 214–220.Google Scholar
  49. Langlois, J. H., Ritter, J. M., Casey, R. J., & Sawin, D. B. (1995). Infant attractiveness predicts maternal behaviors and attitudes. Developmental Psychology, 31, 464–472.Google Scholar
  50. Langlois, J. H., Kalakanis, L., Rubenstein, A. J., Larson, A., Hallam, M., & Smoot, M. (2000). Maxims or myths of beauty? A meta-analytic and theoretical review. Psychological Bulletin, 126, 390–423. doi: 10.1037/0033-2909.126.3.390 PubMedGoogle Scholar
  51. Leopold, D. A., Bondar, I. V., & Giese, M. A. (2006). Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature, 442, 572–575. doi: 10.1038/nature04951 PubMedGoogle Scholar
  52. Light, L. L., Hollander, S., & Kayra-Stuart, F. (1981). Whay attractive people are harder to remember. Personality and Social Psychology Bulletin, 7, 269–276.Google Scholar
  53. Linkenkaer-Hansen, K., Palva, J. M., Sams, M., Hietanen, J. K., Aronen, H. J., & Ilmoniemi, R. J. (1998). Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto- and electroencephalography. Neuroscience Letters, 253, 147–150.PubMedGoogle Scholar
  54. Loffler, G., Yourganov, G., Wilkinson, F., & Wilson, H.R. (2005). fMRI evidence for the neural representation of faces. Nature Neuroscience, 8, 1386–1390.Google Scholar
  55. Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., & Courchesne, E. (2002). Dynamic brain sources of visual evoked responses. Science, 295, 690–694.PubMedGoogle Scholar
  56. Mende-Siedlecki, P., Said, C. P., & Todorov, A. (2013). The social evaluation of faces: A meta-analysis of functional neuroimaging studies. Social Cognitive and Affective Neuroscience, 8, 285–299. doi: 10.1093/scan/nsr090 PubMedCentralPubMedGoogle Scholar
  57. Penton-Voak, I. S., Jones, B. C., Little, A. C., Baker, S., Tiddeman, B., Burt, D. M., & Perrett, D. I. (2001). Symmetry, sexual dimorphism in facial proportions and male facial attractiveness. Proceedings of the Royal Society B, 268, 1617–1623.PubMedCentralPubMedGoogle Scholar
  58. Perrett, D. I., May, K. A., & Yoshikawa, S. (1994). Facial shape judgements of female attractiveness. Nature, 368, 239–242.PubMedGoogle Scholar
  59. Perrett, D. I., Lee, K. J., Penton-Voak, I., Rowland, D., Yoshikawa, S., Burt, D. M., & Akamatsu, S. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394, 884–887. doi: 10.1038/29772 PubMedGoogle Scholar
  60. Perrin, F., Perrier, J., Bertrand, O., Giard, M. H., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66, 75–81.PubMedGoogle Scholar
  61. Peskin, M., & Newell, F. N. (2004). Familiarity breeds attraction: Effects of exposure on the attractiveness of typical and distinctive faces. Perception, 33, 147–157.PubMedGoogle Scholar
  62. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152. doi: 10.1111/1469-8986.3720127 PubMedGoogle Scholar
  63. Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas. Journal of Experimental Psychology, 83, 304–308.Google Scholar
  64. Principe, C. P., & Langlois, J. H. (2011). Faces differing in attractiveness elicit corresponding affective responses. Cognition and Emotion, 25, 140–148. doi: 10.1080/02699931003612098 PubMedCentralPubMedGoogle Scholar
  65. Principe, C. P., & Langlois, J. H. (2012). Shifting the prototype: Experience with faces influence affective and attractiveness preferences. Social Cognition, 30, 109–120. doi: 10.1521/soco.2012.30.1.109 PubMedCentralPubMedGoogle Scholar
  66. Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532. doi: 10.1037/0033-2909.114.3.510 PubMedGoogle Scholar
  67. Reber, P. J., Stark, C. E. L., & Squire, L. R. (1998). Cortical areas supporting category learning identified using functional MRI. Proceedings of the National Academy of Sciences, 95, 747–750.Google Scholar
  68. Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382–407.Google Scholar
  69. Rennels, J. L., Bronstad, P. M., & Langlois, J. H. (2008). Are attractive men’s faces masculine or feminine? The importance of type of facial stimuli. Journal of Experimental Psychology: Human Perception and Performance, 34, 884–893. doi: 10.1037/0096-1523.34.4.884 PubMedGoogle Scholar
  70. Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annual Review of Psychology, 57, 199–226.PubMedGoogle Scholar
  71. Rhodes, G., & Tremewan, T. (1996). Averageness, exaggeration, and facial attractiveness. Psychological Science, 7, 105–110.Google Scholar
  72. Rhodes, G., Proffitt, F., Grady, J. M., & Sumich, A. (1998). Facial symmetry and the perception of beauty. Psychonomic Bulletin & Review, 5, 659–669. doi: 10.3758/BF03208842 Google Scholar
  73. Riani, M., Perrotta, D., & Torti, F. (2012). FSDA: A MATLAB toolbox for robust analysis and interactive data exploration. Chemometrics and Intelligent Laboratory Design, 116, 17–32.Google Scholar
  74. Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439. doi: 10.1016/0010-0285(76)90013-X Google Scholar
  75. Rossion, B., & Curran, T. (2010). Visual expertise with pictures of cars correlates with RT magnitude of the car inversion effect. Perception, 39, 173–183. doi: 10.1068/p6270 PubMedGoogle Scholar
  76. Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behavioral and Cognitive Neuroscience Reviews, 1, 63–75.PubMedGoogle Scholar
  77. Rossion, B., & Jacques, C. (2011). The N170: Understanding the time course of face perception in the human brain. In S. Luck & E. Kappenman (Eds.), The Oxford handbook of ERP components (pp. 115–142). New York: Oxford University Press.Google Scholar
  78. Rossion, B., Delvenne, J.-F., Debatisse, D., Goffaux, V., Bruyer, R., Crommelinck, M., & Guérit, J.-M. (1999). Spatio-temporal localization of the face inversion effect: An event-related potentials study. Biological Psychology, 50, 173–189.PubMedGoogle Scholar
  79. Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., & Crommelinck, M. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not inverted objects: An electrophysiological account of face-specific processes in the human brain. NeuroReport, 11, 69–74.PubMedGoogle Scholar
  80. Rossion, B., Curran, T., & Gauthier, I. (2002). A defense of the subordinate-level expertise account for the N170 component. Cognition, 85, 189–196.PubMedGoogle Scholar
  81. Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orienting tuning for face, word, and object processing in the visual cortex. NeuroImage, 20, 1609–1624.PubMedGoogle Scholar
  82. Rossion, B., Collins, D., Goffaux, V., & Curran, T. (2007). Long-term expertise with artificial objects increases visual competition with early face categorization processes. Journal of Cognitive Neuroscience, 19, 543–555. doi: 10.1162/jocn.2007.19.3.543 PubMedGoogle Scholar
  83. Rousseeuw, P. J., & Leroy, A. M. (2003). Robust regression and outlier detection. Hoboken: Wiley.Google Scholar
  84. Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2007). Single-trial EEG dynamics of object and face processing. NeuroImage, 36, 843–862.PubMedGoogle Scholar
  85. Rubenstein, A. J., Kalakanis, L., & Langlois, J. H. (1999). Infant preferences for attractive faces: A cognitive explanation. Developmental Psychology, 35, 848–855.PubMedGoogle Scholar
  86. Rubenstein, A. J., Langlois, J. H., & Roggman, L. A. (2002). What makes a face attractive and why: The role of averageness in defining facial beauty. In G. Rhodes & L. A. Zebrowitz (Eds.), Facial attractiveness: Evolutionary, cognitive, and social perspectives (pp. 1–33). Westport: Ablex Publishing.Google Scholar
  87. Schacht, A., Werheid, K., & Sommer, W. (2008). The appraisal of facial beauty is rapid but not mandatory. Cognitive, Affective, & Behavioral Neuroscience, 8, 132–142. doi: 10.3758/CABN.8.2.132 Google Scholar
  88. Smulders, F. T. Y., Kenemans, J. L., & Kok, A. (1994). A comparison of different methods for estimating single-trial P300 latencies. Electroencephalography and Clinical Neurophysiology, 92, 107–114.PubMedGoogle Scholar
  89. Spencer, K. M. (2005). Averaging, detection, and classification of single-trial ERPs. In T. C. Handy (Ed.), Event-related potentials: A methods handbook (pp. 209–228). Cambridge: MIT Press.Google Scholar
  90. Spencer, K. M., Abad, E. V., & Donchin, E. (2000). On the search for the neurophysiological manifestation of recollective experience. Psychophysiology, 37, 494–506.PubMedGoogle Scholar
  91. Squires, K. C., Donchin, E., Herning, R. I., & McCarthy, G. (1977). On the influence of task relevance and stimulus probability on event-related-potential components. Electroencephalography and Clinical Neurophysiology, 42, 1–14.PubMedGoogle Scholar
  92. Tanaka, J. W., & Curran, T. (2001). A neural basis for expert object recognition. Psychological Science, 12, 43–47.PubMedGoogle Scholar
  93. Tanaka, J. W., Luu, P., Weisbrod, M., & Kiefer, M. (1999). Tracking the time course of object categorization using event-related potentials. NeuroReport, 10, 829–835.PubMedGoogle Scholar
  94. Thornhill, R., & Gangestad, S. W. (1993). Human facial beauty: Averageness, symmetry, and parasite resistance. Human Nature, 4, 237–269.PubMedGoogle Scholar
  95. Thornhill, R., & Gangestad, S. W. (1999). Facial attractiveness. Trends in Cognitive Sciences, 3, 452–460.PubMedGoogle Scholar
  96. Trujillo, L. T., & Allen, J. J. B. (2007). Theta EEG dynamics of the error-related negativity. Clinical Neurophysiology, 118, 645–668. doi: 10.1016/j.clinph.2006.11.009 PubMedGoogle Scholar
  97. Trujillo, L. T., Kornguth, S., & Schnyer, D. M. (2009). An ERP examination of the differential effects of sleep deprivation on exogenously cued and endogenously cued attention. Sleep, 32, 1285–1297.PubMedCentralPubMedGoogle Scholar
  98. Vizioli, L., Foreman, K., Rousselet, G. A., & Caldara, R. (2010). Inverting faces elicits sensitivity to race on the N170 component: A cross-cultural study. Journal of Vision, 10(1):15, 1–23. doi: 10.1167/10.1.15 Google Scholar
  99. Vokey, J. R., & Read, J. D. (1992). Familiarity, memorability, and the effect of typicality on the recognition of faces. Memory & Cognition, 20, 291–302. doi: 10.3758/BF03199666 Google Scholar
  100. Wickham, L. H. V., & Morris, P. E. (2003). Attractiveness, distinctiveness, and recognition of faces: Attractive faces can be typical or distinctive but are not better recognized. American Journal of Psychology, 116, 455–468.PubMedGoogle Scholar
  101. Winkielman, P., & Cacioppo, J. T. (2001). Mind at ease puts a smile on the face: Psychophysiological evidence that processing facilitation leads to positive affect. Journal of Personality and Social Psychology, 81, 989–1000. doi: 10.1037/0022-3514.81.6.989 PubMedGoogle Scholar
  102. Winkielman, P., Halberstadt, J., Fazendeiro, T., & Catty, S. (2006). Prototypes are attractive because they are easy on the mind. Psychological Science, 17, 799–806. doi: 10.1111/j.1467-9280.2006.01785.x PubMedGoogle Scholar
  103. Yao, D. (2001). A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiological Measurement, 22, 693–711.PubMedGoogle Scholar
  104. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81, 141–145.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Logan T. Trujillo
    • 1
    • 2
    Email author
  • Jessica M. Jankowitsch
    • 1
  • Judith H. Langlois
    • 1
  1. 1.Department of PsychologyUniversity of Texas at AustinAustinUSA
  2. 2.Department of PsychologyUniversity of Texas at AustinAustinUSA

Personalised recommendations