Skip to main content

Evidence for a fixed capacity limit in attending multiple locations

Abstract

A classic question concerns whether humans can attend multiple locations or objects at once. Although it is generally agreed that the answer to this question is “yes,” the limits on this ability are subject to extensive debate. According to one view, attentional resources can be flexibly allocated to a variable number of locations, with an inverse relationship between the number of selected locations and the quality of information processing at each location. Alternatively, these resources might be quantized in a “discrete” fashion that enables concurrent access to a small number of locations. Here, we report a series of experiments comparing these alternatives. In each experiment, we cued participants to attend a variable number of spatial locations and asked them to report the orientation of a single, briefly presented target. In all experiments, participants’ orientation report errors were well-described by a model that assumes a fixed upper limit in the number of locations that can be attended. Conversely, report errors were poorly described by a flexible-resource model that assumes no fixed limit on the number of locations that can be attended. Critically, we showed that these discrete limits were predicted by cue-evoked neural activity elicited before the onset of the target array, suggesting that performance was limited by selection processes that began prior to subsequent encoding and memory storage. Together, these findings constitute novel evidence supporting the hypothesis that human observers can attend only a small number of discrete locations at an instant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    Note that our cued locations were always arranged contiguously. One might wonder whether our results would generalize to a situation in which cued locations were randomly arranged or interleaved between uncued locations. The present results cannot speak directly to this question. However, in pilot experiments not reported here, we obtained similar findings (i.e., the discrete-resource model always outperformed the flexible-resource model) when we cued random locations in the left and right hemifields on each trial (with the constraint that each hemifield contained two cued positions).

  2. 2.

    The smooth curves overlaid in Fig. 2 were fit to the mean distributions of report errors across participants. Fits at the individual-participant level were substantially noisier.

  3. 3.

    The nr variable corresponds to the proportion of trials on which the participant failed to select the cued location and was forced to guess. Thus, we defined “capacity” as N(1 – nr N ), where N is the number of cued locations.

References

  1. Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16, 637–643.

    PubMed  Article  Google Scholar 

  2. Alvarez, G. A., Gill, J., & Cavanagh, P. (2012). Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection. Journal of Vision, 12(5), 9. doi:10.1167/12.5.9

    PubMed  Article  Google Scholar 

  3. Anderson, D. E., & Awh, E. (2012). The plateau in mnemonic resolution across large set sizes indicates discrete resource limits in visual working memory. Attention, Perception, & Psychophysics, 74, 891–910. doi:10.3758/s13414-012-0292-1

    Article  Google Scholar 

  4. Anderson, D. E., Vogel, E. K., & Awh, E. (2011). Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. Journal of Neuroscience, 31, 1128–1138. doi:10.1523/JNEUROSCI.4125-10.2011

    PubMed  Article  Google Scholar 

  5. Anderson, D. E., Vogel, E. K., & Awh, E. (2013). A common discrete resource for visual working memory and visual search. Psychological Science, 24, 929–938.

    PubMed  Article  Google Scholar 

  6. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628. doi:10.1111/j.1467-9280.2007.01949.x

    PubMed  Article  Google Scholar 

  7. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. doi:10.1016/S1364-6613(00)01593-X

    PubMed  Article  Google Scholar 

  8. Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834–846.

    PubMed  Google Scholar 

  9. Barton, B., Ester, E. F., & Awh, E. (2009). Discrete resource allocation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 35, 1359–1367. doi:10.1037/a0015792

    PubMed Central  PubMed  Google Scholar 

  10. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10):7, 1–11. doi: 10.1167/9.10.7

    Google Scholar 

  11. Bergen, J. R., & Julesz, B. (1983). Parallel versus serial processing in rapid pattern discrimination. Nature, 303, 696–698.

    PubMed  Article  Google Scholar 

  12. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357

    PubMed  Article  Google Scholar 

  13. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi:10.1017/S0140525X01003922. disc. 114–185.

    PubMed  Article  Google Scholar 

  14. Cusack, R., Mitchell, D. J., & Duncan, J. (2010). Discrete object representation, attention switching, and task difficulty in the parietal lobe. Journal of Cognitive Neuroscience, 22, 32–47.

    PubMed  Article  Google Scholar 

  15. Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selection and tracking multiple moving objects. Journal of Neuroscience, 28, 4183–4191. doi:10.1523/JNEUROSCI.0556-08.2008

    PubMed Central  PubMed  Article  Google Scholar 

  16. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi:10.1037/0033-295X.96.3.433

    PubMed  Article  Google Scholar 

  17. Enns, J. T., & Di Lollo, V. (1997). Object substitution: A new form of masking in unattended visual locations. Psychological Science, 8, 135–139. doi:10.1111/j.1467-9280.1997.tb00696.x

    Article  Google Scholar 

  18. Ester, E. F., Drew, T., Klee, D., Vogel, E. K., & Awh, E. (2012). Neural measures reveal a fixed item limit in subitizing. Journal of Neuroscience, 32, 7169–7177.

    PubMed Central  PubMed  Article  Google Scholar 

  19. Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2007). How many locations can be selected at once? Journal of Experimental Psychology: Human Perception and Performance, 33, 1003–1012. doi:10.1037/0096-1523.33.5.1003

    PubMed  Google Scholar 

  20. Hopf, J., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., & Heinze, H. J. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241.

    PubMed  Article  Google Scholar 

  21. Huang, L., & Pashler, H. (2005). Attention capacity and task difficulty in visual search. Cognition, 94, B101–B111. doi:10.1016/j.cognition.2004.06.006

    PubMed  Article  Google Scholar 

  22. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219. doi:10.1016/0010-0285(92)90007-O

    PubMed  Article  Google Scholar 

  23. Kramer, A. F., & Hahn, S. (1995). Splitting the beam: Distribution of attention over noncontiguous regions of the visual field. Psychological Science, 6, 381–386.

    Article  Google Scholar 

  24. Liebe, S., Hoerzer, G. M., Logothetis, N. K., & Rainer, G. (2012). Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 15, 456–462.

    PubMed  Article  Google Scholar 

  25. Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.

    PubMed  Article  Google Scholar 

  26. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi:10.1038/36846

    PubMed  Article  Google Scholar 

  27. MacKay, D. J. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.

    Google Scholar 

  28. Malinowski, P., Fuchs, S., & Müller, M. M. (2007). Sustained division of spatial attention to multiple locations within one hemifield. Neuroscience Letters, 414, 65–70.

    PubMed  Article  Google Scholar 

  29. Mazyar, H., van den Berg, R., & Ma, W. J. (2012). Does precision decrease with set size? Journal of Vision, 12(6), 10. doi:10.1167/12.6.10

    PubMed Central  PubMed  Article  Google Scholar 

  30. McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43, 77–94.

    PubMed  Article  Google Scholar 

  31. McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42, 677–686.

    PubMed  Article  Google Scholar 

  32. McMains, S. A., & Somers, D. (2005). Processing efficiency of divided spatial attention mechanisms in human visual cortex. Journal of Neuroscience, 25, 9444–9448.

    PubMed  Article  Google Scholar 

  33. Mitchell, D. J., & Cusack, R. (2008). Flexible, capacity-limited activity of posterior parietal cortex in perceptual as well as visual short-term memory tasks. Cerebral Cortex, 18, 1788–1798.

    PubMed  Article  Google Scholar 

  34. Müller, M. M., Malinowski, P., Gruber, T., & Hillyard, S. A. (2003). Sustained division of the attentional spotlight. Nature, 424, 309–312.

    PubMed  Article  Google Scholar 

  35. Pashler, H. (1988). Familiarity and visual change detection. Perception and Psychophysics, 44(4), 369–378.

    Google Scholar 

  36. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi:10.1163/156856897X00366

    PubMed  Article  Google Scholar 

  37. Raffone, A., & Wolters, G. (2001). A cortical mechanism for binding in visual working memory. Journal of Cognitive Neuroscience, 13, 766–785.

    PubMed  Article  Google Scholar 

  38. Rensink, R., & Enns, J. T. (1995). Preemption effects in visual search: Evidence for low-level grouping. Psychological Review, 102, 101–130. doi:10.1037/0033-295X.102.1.101

    PubMed  Article  Google Scholar 

  39. Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Proceedings of the National Academy of Sciences, 105, 5975–5979.

    Article  Google Scholar 

  40. Sagi, D., & Julesz, B. (1985). “Where” and “what” in vision. Science, 228, 1217–1219.

    PubMed  Article  Google Scholar 

  41. Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., & Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19, 1846–1852. doi:10.1016/j.cub.2009.08.062

    PubMed  Article  Google Scholar 

  42. Scharff, A., Palmer, J., & Moore, C. M. (2011a). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18, 713–721. doi:10.3758/s13423-011-0101-1

    Article  Google Scholar 

  43. Scharff, A., Palmer, J., & Moore, C. M. (2011b). Extending the stimultaneous–sequential paradigm to measure perceptual capacity for features and words. Journal of Experimental Psychology: Human Perception and Performance, 37, 813–833. doi:10.1037/a0021440

    PubMed  Google Scholar 

  44. Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences, 106, 21341–21346.

    Article  Google Scholar 

  45. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. doi:10.1016/0010-0285(80)90005-5

    PubMed  Article  Google Scholar 

  46. Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited-capacity preattentive processing. Journal of Experimental Psychology: Human Perception and Performance, 19, 331–351. doi:10.1037/0096-1523.19.2.331

    PubMed  Google Scholar 

  47. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80–102. doi:10.1037/0033-295X.101.1.80

    PubMed  Article  Google Scholar 

  48. Van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109, 8780–8785.

    Article  Google Scholar 

  49. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. doi:10.1038/nature02447

    PubMed  Article  Google Scholar 

  50. Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44, 92–107.

    PubMed  Article  Google Scholar 

  51. Xu, Y., & Chun, M. M. (2005). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95. doi:10.1038/nature04262

    PubMed  Article  Google Scholar 

  52. Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Science, 13, 167–174. doi:10.1016/j.tics.2009.01.008

    Article  Google Scholar 

  53. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi:10.1038/nature06860

    PubMed Central  PubMed  Article  Google Scholar 

  54. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428. doi:10.1111/j.1467-9280.2009.02322.x

    PubMed Central  PubMed  Article  Google Scholar 

  55. Zhang, W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22, 1434–1441. doi:10.1177/0956797611417006

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Author note

Supported by Grant No. NIH R01-MH087214 to E.A. and E.K.V. E.F.E. and E.A. conceived and designed all experiments. E.F.E. and L.M.M. collected the data and analyzed them using software developed by K.F. Author E.K.V. provided guidance and assistance with electrophysiological recordings. E.F.E. and E.A. wrote the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward F. Ester.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ester, E.F., Fukuda, K., May, L.M. et al. Evidence for a fixed capacity limit in attending multiple locations. Cogn Affect Behav Neurosci 14, 62–77 (2014). https://doi.org/10.3758/s13415-013-0222-2

Download citation

Keywords

  • Attention
  • Working memory
  • ERP