Abstract
Peripheral vision is limited due to several factors, such as visual resolution, crowding, and attention. When attention is not directed towards a stimulus, detection, discrimination, and identification are often compromised. Recent studies have found a new phenomenon that strongly limits peripheral vision, “redundancy masking”. In redundancy masking, the number of perceived items in repeating patterns is reduced. For example, when presenting three lines in the peripheral visual field and asking participants to report the number of lines, often only two lines are reported. Here, we investigated what role attention plays in redundancy masking. If redundancy masking was due to limited attention to the target, it should be stronger when less attention is allocated to the target, and absent when attention is maximally focused on the target. Participants were presented with line arrays and reported the number of lines in three cueing conditions (i.e., single cue, double cue, and no cue). Redundancy masking was observed in all cueing conditions, with observers reporting fewer lines than presented in the single, double, and no cue conditions. These results suggest that redundancy masking is not due to limited attention. The number of lines reported was closer to the correct number of lines in the single compared to the double and the no cue conditions, suggesting that reduced attention additionally compromised stimulus discrimination, and replicating typical effects of diminished attention. Taken together, our results suggest that the extent of attention to peripherally presented stimuli modulates discrimination performance, but does not account for redundancy masking.
Similar content being viewed by others
References
Abrams, J., Nizam, A., & Carrasco, M. (2012). Isoeccentric locations are not equivalent: The extent of the vertical meridian asymmetry. Vision Research, 52(1), 70–78. https://doi.org/10.1016/j.visres.2011.10.016
Albonico, A., Malaspina, M., Bricolo, E., Martelli, M., & Daini, R. (2016). Temporal dissociation between the focal and orientation components of spatial attention in central and peripheral vision. Acta Psychologica, 171, 85–92. https://doi.org/10.1016/j.actpsy.2016.10.003
Albonico, A., Martelli, M., Bricolo, E., Frasson, E., & Daini, R. (2018). Focusing and orienting spatial attention differently modulate crowding in central and peripheral vision. Journal of Vision, 18(3), 4. https://doi.org/10.1167/18.3.4
Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic representation in peripheral vision explains visual crowding. Journal of Vision, 9(12), 13. https://doi.org/10.1167/9.12.13. 1-18.
Barbot, A., Xue, S., & Carrasco, M. (2021). Asymmetries in visual acuity around the visual field. Journal of Vision, 21(1), 2–2. https://doi.org/10.1167/jov.21.1.2
Bashinski, H. S., & Bacharach, V. R. (1980). Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations. Perception & Psychophysics, 28(3), 241–248. https://doi.org/10.3758/BF03204380
Beanland, V., & Pammer, K. (2010). Looking without seeing or seeing without looking? Eye movements in sustained inattentional blindness. Vision Research, 50(10), 977–988. https://doi.org/10.1016/j.visres.2010.02.024
Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226(5241), 177–178. https://doi.org/10.1038/226177a0
Bouma, H. (1973). Visual interference in the parafoveal recognition of initial and final letters of words. Vision Research, 13(4), 767–782. https://doi.org/10.1016/0042-6989(73)90041-2
Bowen, J. D., Alforque, C. V., & Silver, M. A. (2023). Effects of involuntary and voluntary attention on critical spacing of visual crowding. Journal of Vision, 23(3), 2. https://doi.org/10.1167/jov.23.3.2
Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10(6), 20–20. https://doi.org/10.1167/10.6.20
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012
Carrasco, M., Talgar, C. P., & Cameron, E. L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spatial Vision, 15(1), 61–75.
Cartwright-Finch, U., & Lavie, N. (2007). The role of perceptual load in inattentional blindness. Cognition, 102(3), 321–340. https://doi.org/10.1016/j.cognition.2006.01.002
Chakravarthi, R., & Cavanagh, P. (2007). Temporal properties of the polarity advantage effect in crowding. Journal of Vision, 7(2), 11. https://doi.org/10.1167/7.2.11. 1-13.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., & Li, Y. (2018). xgboost: Extreme Gradient Boosting (R package Version 0.71.2). Retrieved from https://cran.r-project.org/web/packages/xgboost/index.html
Coates, D. R., & Sayim, B. (2019). The critical spacing of crowding with diffuse attention. 41st European Conference on Visual Perception (ECVP) 2018. Perception, 48(1), 47–48. https://doi.org/10.1177/0301006618824879
Downing, C. J. (1988). Expectancy and visual-spatial attention: Effects on perceptual quality. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 188–202. https://doi.org/10.1037/0096-1523.14.2.188
Drew, T., Võ, M.L.-H., & Wolfe, J. M. (2013). The Invisible Gorilla Strikes Again: Sustained Inattentional Blindness in Expert Observers. Psychological Science, 24(9), 1848–1853. https://doi.org/10.1177/0956797613479386
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. https://doi.org/10.1037/0033-295X.96.3.433
Egeth, H. E., Leonard, C. J., & Palomares, M. (2008). The role of attention in subitizing: Is the magical number 1? Visual Cognition, 16(4), 463–473. https://doi.org/10.1080/13506280801937939
Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161–177. https://doi.org/10.1037/0096-3445.123.2.161
Eriksen, C. W., & Hoffman, J. E. (1972). Temporal and spatial characteristics of selective encoding from visual displays. Perception & Psychophysics, 12(2), 201–204. https://doi.org/10.3758/BF03212870
Felisberti, F. M., Solomon, J. A., & Morgan, M. J. (2005). The role of target salience in crowding. Perception, 34(7), 823–833. https://doi.org/10.1068/p5206
Fortenbaugh, F. C., Silver, M. A., & Robertson, L. C. (2015). Individual differences in visual field shape modulate the effects of attention on the lower visual field advantage in crowding. Journal of Vision, 15(2), 19–19. https://doi.org/10.1167/15.2.19
Gong, M., Liu, T., Liu, X., Huangfu, B., & Geng, F. (2023). Attention relieves visual crowding: Dissociable effects of peripheral and central cues. Journal of Vision, 23(5), 9. https://doi.org/10.1167/jov.23.5.9
Grasso, P. A., Anobile, G., & Arrighi, R. (2021). Numerosity adaptation partly depends on the allocation of implicit numerosity-contingent visuo-spatial attention. Journal of Vision, 21(1), 12. https://doi.org/10.1167/jov.21.1.12
Grasso, P. A., Anobile, G., Caponi, C., & Arrighi, R. (2021). Implicit visuospatial attention shapes numerosity adaptation and perception. Journal of Vision, 21(8), 26. https://doi.org/10.1167/jov.21.8.26
Greenwood, J. A., Szinte, M., Sayim, B., & Cavanagh, P. (2017). Variations in crowding, saccadic precision, and spatial localization reveal the shared topology of spatial vision. Proceedings of the National Academy of Sciences of the United States of America, 114(17), E3573–E3582. https://doi.org/10.1073/pnas.1615504114
Grubb, M. A., Behrmann, M., Egan, R., Minshew, N. J., Heeger, D. J., & Carrasco, M. (2013). Exogenous spatial attention: Evidence for intact functioning in adults with autism spectrum disorder. Journal of Vision, 13(14). https://doi.org/10.1167/13.14.9
Hansmann-Roth, S., Harmening, W., & Sayim, B. (2021). One less is enough: Evidence for redundancy masking in the fovea. 43rd European Conference on Visual Perception (ECVP) 2021. Perception, 50(1), 113–113. https://doi.org/10.1177/03010066211059887
He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383(6598), 334–337. https://doi.org/10.1038/383334a0
He, S., Cavanagh, P., & Intriligator, J. (1997). Attentional resolution. Trends in Cognitive Sciences, 1(3), 115–121. https://doi.org/10.1016/S1364-6613(97)89058-4
Herzog, M. H., Sayim, B., Chicherov, V., & Manassi, M. (2015). Crowding, grouping, and object recognition: A matter of appearance. Journal of Vision, 15(6), 5. https://doi.org/10.1167/15.6.5
Huckauf, A., & Heller, D. (2002). Spatial selection in peripheral letter recognition: In search of boundary conditions. Acta Psychologica, 111(1), 101–123. https://doi.org/10.1016/s0001-6918(02)00045-8
Jensen, M. S., Yao, R., Street, W. N., & Simons, D. J. (2011). Change blindness and inattentional blindness. WIREs Cognitive Science, 2(5), 529–546. https://doi.org/10.1002/wcs.130
Jevons, W. S. (1871). The Power of Numerical Discrimination. Nature, 3(67), 67. https://doi.org/10.1038/003281a0
Kaufman, E. L., & Lord, M. W. (1949). The discrimination of visual number. The American Journal of Psychology, 62(4), 498–525.
Kentridge, R. W., Heywood, C. A., & Weiskrantz, L. (2004). Spatial attention speeds discrimination without awareness in blindsight. Neuropsychologia, 42(6), 831–835. https://doi.org/10.1016/j.neuropsychologia.2003.11.001
Kewan-Khalayly, B., Migó, M., & Yashar, A. (2022). Transient attention equally reduces visual crowding in radial and tangential axes. Journal of Vision, 22(9), 3. https://doi.org/10.1167/jov.22.9.3
Koivisto, M., Hyönä, J., & Revonsuo, A. (2004). The effects of eye movements, spatial attention, and stimulus features on inattentional blindness. Vision Research, 44(27), 3211–3221. https://doi.org/10.1016/j.visres.2004.07.026
Levi, D. M. (2008). Crowding–an essential bottleneck for object recognition: A mini-review. Vision Research, 48(5), 635–654. https://doi.org/10.1016/j.visres.2007.12.009
Li, M., Yildirim, F. Z., Alp, N., & Sayim, B. (2021). Seeing features of unseen objects: feature migration in redundancy masking. 43rd European Conference on Visual Perception (ECVP) 2021. Perception, 50(1), 93–94. https://doi.org/10.1177/03010066211059887
L-Miao, L., Reynvoet, B., & Sayim, B. (2022). Anisotropic representations of visual space modulate visual numerosity estimation. Vision Research, 201, 108130. https://doi.org/10.1016/j.visres.2022.108130
Lu, Z.-L., & Dosher, B. A. (1998). External noise distinguishes attention mechanisms. Vision Research, 38(9), 1183–1198. https://doi.org/10.1016/S0042-6989(97)00273-3
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R Package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
Luzardo, F., & Yeshurun, Y. (2021). Inter-individual variations in internal noise predict the effects of spatial attention. Cognition, 217, 104888. https://doi.org/10.1016/j.cognition.2021.104888
Manassi, M., Sayim, B., & Herzog, M. H. (2012). Grouping, pooling, and when bigger is better in visual crowding. Journal of Vision, 12(10), 13. https://doi.org/10.1167/12.10.13
Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111(1), 1–22. https://doi.org/10.1037/0096-3445.111.1.1
Melnik, N., Coates, D. R., & Sayim, B. (2018). Emergent features in the crowding zone: When target-flanker grouping surmounts crowding. Journal of Vision, 18(9), 19. https://doi.org/10.1167/18.9.19
Melnik, N., Coates, D. R., & Sayim, B. (2020). Emergent features break the rules of crowding. Scientific Reports, 10(1), 1. https://doi.org/10.1038/s41598-019-57277-y
Most, S. B., Scholl, B. J., Clifford, E. R., & Simons, D. J. (2005). What you see is what you set: Sustained inattentional blindness and the capture of awareness. Psychological Review, 112(1), 217–242. https://doi.org/10.1037/0033-295X.112.1.217
Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology Human Perception and Performance, 15(2), 315–330. https://doi.org/10.1037//0096-1523.15.2.315
Myczek, K., & Simons, D. J. (2008). Better than average: Alternatives to statistical summary representations for rapid judgments of average size. Perception & Psychophysics, 70(5), 772–788. https://doi.org/10.3758/PP.70.5.772
Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 1631–1647. https://doi.org/10.1016/0042-6989(89)90144-2
Nazir, T. A. (1992). Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision. Vision Research, 32(4), 771–777. https://doi.org/10.1016/0042-6989(92)90192-L
Niogi, S., Mukherjee, P., Ghajar, J., & McCandliss, B. (2010). Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts. Frontiers in Neuroanatomy, 4. https://doi.org/10.3389/neuro.05.002.2010
Olivers, C. N. L., & Watson, D. G. (2008). Subitizing requires attention. Visual Cognition, 16(4), 439–462. https://doi.org/10.1080/13506280701825861
Palomares, M., Smith, P. R., Pitts, C. H., & Carter, B. M. (2011). The effect of viewing eccentricity on enumeration. PloS One, 6(6), e20779. https://doi.org/10.1371/journal.pone.0020779
Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017
Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition. Current Opinion in Neurobiology, 18(4), 445–451. https://doi.org/10.1016/j.conb.2008.09.008
Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision, 4(12), 1136–1169. https://doi.org/10.1167/4.12.12
Persuh, M., Gomez, M., Bauer, L., & Melara, R. D. (2014). Feature-based inattentional blindness: Loss of awareness to featural information in fully attended objects. Attention, Perception, & Psychophysics, 76(8), 2229–2239. https://doi.org/10.3758/s13414-014-0712-5
Petrov, Y., & Meleshkevich, O. (2011). Asymmetries and idiosyncratic hot spots in crowding. Vision Research, 51(10), 1117–1123. https://doi.org/10.1016/j.visres.2011.03.001
Petrov, Y., & Meleshkevich, O. (2011). Locus of spatial attention determines inward–outward anisotropy in crowding. Journal of Vision, 11(4), 1–1. https://doi.org/10.1167/11.4.1
Põder, E. (2006). Crowding, feature integration, and two kinds of “attention.” Journal of Vision, 6(2), 163–169. https://doi.org/10.1167/6.2.7
Põder, E. (2007). Effect of colour pop-out on the recognition of letters in crowding conditions. Psychological Research, 71(6), 641–645. https://doi.org/10.1007/s00426-006-0053-7
Pomè, A., Anobile, G., Cicchini, G. M., Scabia, A., & Burr, D. C. (2019). Higher attentional costs for numerosity estimation at high densities. Attention, Perception, & Psychophysics, 81(8), 2604–2611. https://doi.org/10.3758/s13414-019-01831-3
Pomè, A., Thompson, D., Burr, D. C., & Halberda, J. (2021). Location- and object-based attention enhance number estimation. Attention, Perception, & Psychophysics, 83(1), 7–17. https://doi.org/10.3758/s13414-020-02178-w
Pomerantz, J. R., & Schwaitzberg, S. D. (1975). Grouping by proximity: Selective attention measures. Perception & Psychophysics, 18(5), 355–361. https://doi.org/10.3758/BF03211212
Posner, M. I. (1980). Orienting of Attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231
Posner, M. I., & Petersen, S. E. (1990). The Attention System of the Human Brain. Annual Review of Neuroscience, 13(1), 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2014). Developing Attention: Behavioral and Brain Mechanisms. Advances in Neuroscience (Hindawi), 2014, 405094. https://doi.org/10.1155/2014/405094
Purokayastha, S., Roberts, M., & Carrasco, M. (2021). Voluntary attention improves performance similarly around the visual field. Attention, Perception, & Psychophysics, 83(7), 2784–2794. https://doi.org/10.3758/s13414-021-02316-y
Raidvee, A., Toom, M., & Allik, J. (2021). A method for detection of inattentional feature blindness. Attention, Perception, & Psychophysics, 83(3), 1282–1289. https://doi.org/10.3758/s13414-020-02234-5
Railo, H., Koivisto, M., Revonsuo, A., & Hannula, M. M. (2008). The role of attention in subitizing. Cognition, 107(1), 82–104. https://doi.org/10.1016/j.cognition.2007.08.004
Rashal, E., & Yeshurun, Y. (2014). Contrast dissimilarity effects on crowding are not simply another case of target saliency. Journal of Vision, 14(6), 9. https://doi.org/10.1167/14.6.9
Remington, R. W., Johnston, J. C., & Yantis, S. (1992). Involuntary attentional capture by abrupt onsets. Perception & Psychophysics, 51(3), 279–290. https://doi.org/10.3758/BF03212254
Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention Increases Sensitivity of V4 Neurons. Neuron, 26(3), 703–714. https://doi.org/10.1016/S0896-6273(00)81206-4
Rummens, K., & Sayim, B. (2019). Disrupting uniformity: Feature contrasts that reduce crowding interfere with peripheral word recognition. Vision Research, 161, 25–35. https://doi.org/10.1016/j.visres.2019.05.006
Rummens, K., & Sayim, B. (2021). Broad attention uncovers benefits of stimulus uniformity in visual crowding. Scientific Reports, 11(1), 23976. https://doi.org/10.1038/s41598-021-03258-z
Rummens, K., & Sayim, B. (2022). Multidimensional feature interactions in visual crowding: When configural cues eliminate the polarity advantage. Journal of Vision, 22(6), 2. https://doi.org/10.1167/jov.22.6.2
Saarela, T. P., Sayim, B., Westheimer, G., & Herzog, M. H. (2009). Global stimulus configuration modulates crowding. Journal of Vision, 9(2), 5.1-11. https://doi.org/10.1167/9.2.5
Sayim, B., & Cavanagh, P. (2013). Grouping and crowding affect target appearance over different spatial scales. PloS One, 8(8), e71188. https://doi.org/10.1371/journal.pone.0071188
Sayim, B., & Taylor, H. (2019). Letters lost: Capturing appearance in crowded peripheral vision reveals a new kind of masking. Psychological Science, 30(7), 1082–1086. https://doi.org/10.1177/0956797619847166
Sayim, B., & Wagemans, J. (2017). Appearance changes and error characteristics in crowding revealed by drawings. Journal of Vision, 17(11), 8. https://doi.org/10.1167/17.11.8
Sayim, B., Westheimer, G., & Herzog, M. H. (2008). Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity. Journal of Vision, 8(8), 12.1–9. https://doi.org/10.1167/8.8.12
Sayim, B., Westheimer, G., & Herzog, M. H. (2010). Gestalt factors modulate basic spatial vision. Psychological Science, 21(5), 641–644. https://doi.org/10.1177/0956797610368811
Sayim, B., Westheimer, G., & Herzog, M. H. (2011). Quantifying target conspicuity in contextual modulation by visual search. Journal of Vision, 11(1), 6. https://doi.org/10.1167/11.1.6
Sayim, B., Greenwood, J. A., & Cavanagh, P. (2014). Foveal target repetitions reduce crowding. Journal of Vision, 14(6), 4–4. https://doi.org/10.1167/14.6.4
Sayim, B., Manassi, M., & Herzog, M. (2014). How color, regularity, and good Gestalt determine backward masking. Journal of Vision, 14(7), 8. https://doi.org/10.1167/14.7.8
Sayim, B., Yildirim, F. Z., & Coates, Daniel R. (2022). What is redundant in redundancy masking? The European Society for Cognitive Psychology.
Scolari, M., Kohnen, A., Barton, B., & Awh, E. (2007). Spatial attention, preview, and popout: Which factors influence critical spacing in crowded displays? Journal of Vision, 7(2), 7.1-23. https://doi.org/10.1167/7.2.7
Simons, D. J. (2000). Attentional capture and inattentional blindness. Trends in Cognitive Sciences, 4(4), 147–155. https://doi.org/10.1016/S1364-6613(00)01455-8
Simons, D. J., & Chabris, C. F. (1999). Gorillas in Our Midst: Sustained Inattentional Blindness for Dynamic Events. Perception, 28(9), 1059–1074. https://doi.org/10.1068/p281059
Strasburger, H. (2005). Unfocused spatial attention underlies the crowding effect in indirect form vision. Journal of Vision, 5(11), 1024–1037. https://doi.org/10.1167/5.11.8
Strasburger, H. (2014). Dancing letters”and ticks that buzz around aimlessly: On the origin of crowding. Perception, 43(9), 963–976. https://doi.org/10.1068/p7726
Strasburger, H. (2020). Seven Myths on crowding and peripheral vision. I-Perception, 11(3), 2041669520913052. https://doi.org/10.1177/2041669520913052
Strasburger, H., & Malania, M. (2013). Source confusion is a major cause of crowding. Journal of Vision, 13(1), 24. https://doi.org/10.1167/13.1.24
Strasburger, H., Harvey, L. O., & Rentschler, I. (1991). Contrast thresholds for identification of numeric characters in direct and eccentric view. Perception & Psychophysics, 49(6), 495–508. https://doi.org/10.3758/bf03212183
Taylor, H., & Sayim, B. (2018). Crowding, attention and consciousness: In support of the inference hypothesis. Mind & Language, 33(1), 17–33. https://doi.org/10.1111/mila.12169
Taylor, H., & Sayim, B. (2020). Redundancy masking and the identity crowding debate. Thought: A Journal of Philosophy, 9(4), 257–265. https://doi.org/10.1002/tht3.469
Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101(1), 80–102. https://doi.org/10.1037/0033-295X.101.1.80
Vetter, P., Butterworth, B., & Bahrami, B. (2008). Modulating attentional load affects numerosity estimation: Evidence against a pre-attentive subitizing mechanism. PloS One, 3(9), e3269. https://doi.org/10.1371/journal.pone.0003269
Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168. https://doi.org/10.1016/j.tics.2011.02.005
Wilkinson, F., Wilson, H. R., & Ellemberg, D. (1997). Lateral interactions in peripherally viewed texture arrays. Journal of the Optical Society of America A, 14(9), 2057. https://doi.org/10.1364/JOSAA.14.002057
Wolford, G., & Chambers, L. (1983). Lateral masking as a function of spacing. Perception & Psychophysics, 33(2), 129–138. https://doi.org/10.3758/bf03202830
Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–75. https://doi.org/10.1038/23936
Yeshurun, Y., & Carrasco, M. (1999). Spatial attention improves performance in spatial resolution tasks1. Vision Research, 39(2), 293–306. https://doi.org/10.1016/S0042-6989(98)00114-X
Yeshurun, Y., & Rashal, E. (2010). Precueing attention to the target location diminishes crowding and reduces the critical distance. Journal of Vision, 10(10), 16. https://doi.org/10.1167/10.10.16
Yildirim, F. Z., & Sayim, B. (2022). High confidence and low accuracy in redundancy masking. Consciousness and Cognition, 102, 103349. https://doi.org/10.1016/j.concog.2022.103349
Yildirim, F. Z., Coates, D. R., & Sayim, B. (2019). Lost lines in warped space: Evidence for spatial compression in crowded displays. Journal of Vision, 19(10), 13c–13c. https://doi.org/10.1167/19.10.13c
Yildirim, F. Z., Coates, D. R., & Sayim, B. (2020). Redundancy masking: The loss of repeated items in crowded peripheral vision. Journal of Vision, 20(4), 14. https://doi.org/10.1167/jov.20.4.14
Yildirim, F. Z., Coates, D. R., & Sayim, B. (2021). Hidden by bias: How standard psychophysical procedures conceal crucial aspects of peripheral visual appearance. Scientific Reports, 11(1), 4095. https://doi.org/10.1038/s41598-021-83325-7
Yildirim, F. Z., Coates, D. R., & Sayim, B. (2022). Atypical visual field asymmetries in redundancy masking. Journal of Vision, 22(5), 4. https://doi.org/10.1167/jov.22.5.4
Acknowledgements
Parts of this work were presented at the European Conference on Visual Perception 2019 in Leuven, Belgium. This work was supported by the Swiss National Science Foundation (PP00P1_163723 to Bilge Sayim).
Author information
Authors and Affiliations
Contributions
F.Z.Y.K., D.R.C., and B.S. designed the study and prepared the manuscript. F.Z.Y.K. collected and analyzed the data and prepared the figures. All authors interpreted the data, F.Z.Y.K. and B.S. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Open Practices Statement
The datasets generated during the study are available on the Open Science Framework database (https://osf.io/8zagw/). The experiments were not preregistered.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yildirim-Keles, F.Z., Coates, D.R. & Sayim, B. Attention in redundancy masking. Atten Percept Psychophys (2024). https://doi.org/10.3758/s13414-024-02885-8
Accepted:
Published:
DOI: https://doi.org/10.3758/s13414-024-02885-8