Skip to main content

The effect of initial performance on motion perception improvements is modulated by training method

Abstract

Repeated practice of a perceptual task, termed “perceptual learning,” can improve visual performance. Previously, the training thresholds were determined in two ways. One is that the stimulus corresponding to a certain level in individually set psychometric functions was selected as the training threshold. The other is that the certain stimulus was selected as the training threshold without consideration of individual differences. However, little is known about how the two training methods modulate perceptual learning. This study aimed to evaluate the effect of initial performance on patterns of motion perceptual learning under two methods—individually set or group averaged—for setting the training threshold. Thirty-six observers were randomly divided into individual and group thresholds. Psychometric functions, with the percentage correct as a function of coherence, were measured using the coherent motion direction identification task. For the individual threshold, each observer was trained at individualized coherence level, targeting 60% correct for each observer’s psychometric function. For the group threshold, each observer was trained at one coherence level, targeting 60% correct in the group-averaged psychometric function. The threshold was reduced after training with the method of constant stimulus in both groups, indicating improvements following perceptual learning. Furthermore, observers with a poorer initial performance exhibited greater learning gains independent of the training method. Importantly, the correlation between the initial performance and learning gains was larger in the individual threshold than in the group threshold, suggesting the influence of the initial performance on the learning amount depends on the training method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401–406. https://doi.org/10.1038/387401a0

    Article  PubMed  Google Scholar 

  2. Astle, A. T., Li, R. W., Webb, B. S., Levi, D. M., & McGraw, P. V. (2013). A Weber-like law for perceptual learning. Scientific Reports, 3(1), 1158. https://doi.org/10.1038/srep01158

    Article  PubMed  PubMed Central  Google Scholar 

  3. Astle, A. T., Blighe, A. J., Webb, B. S., & McGraw, P. V. (2015). The effect of normal aging and age-related macular degeneration on perceptual learning. Journal of Vision, 15(10), 1–16. https://doi.org/10.1167/15.10.16

    Article  Google Scholar 

  4. Ball, K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination. Science, 218(4573), 697–698. https://doi.org/10.1126/science.7134968

    Article  PubMed  Google Scholar 

  5. Bower, J. D., & Andersen, G. J. (2012). Aging, perceptual learning, and changes in efficiency of motion processing. Vision Research, 61(14), 144–156. https://doi.org/10.1016/j.visres.2011.07.016

    Article  PubMed  Google Scholar 

  6. Brainard, D. H. (1997). Psychophysics software for use with MATLAB. Spatial Vision, 10, 433–436.

  7. Chung, S. T. L. (2011). Improving reading speed for people with central vision loss through perceptual learning. Investigative Ophthalmology & Visual Science, 52(2), 1164–1170. https://doi.org/10.1167/iovs.10-6034

    Article  Google Scholar 

  8. Deveau, J., Ozer, D. J., & Seitz, A. R. (2014). Improved vision and on-field performance in baseball through perceptual learning. Current Biology, 24(4), R146–R147. https://doi.org/10.1016/j.cub.2014.01.004

    Article  PubMed  Google Scholar 

  9. Ding, J., & Levi, D. M. (2011). Recovery of stereopsis through perceptual learning in human adults with abnormal binocular vision. Proceedings of the National Academy of Sciences of the United States of America, 108(37), E733–E741. https://doi.org/10.1073/pnas.1105183108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dwyer, D. M. (2008). Perceptual learning: Complete transfer across retinal locations. Current Biology, 18(24), R1134–R1136. https://doi.org/10.1016/j.cub.2008.10.037

    Article  PubMed  Google Scholar 

  11. Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research, 20(3), 376–383. https://doi.org/10.1016/j.cogbrainres.2004.03.009

    Article  PubMed  Google Scholar 

  12. Fahle, M., & Henke-Fahle, S. (1996). Interobserver variance in perceptual performance and learning. Investigative Ophthalmology & Visual Science, 37(5), 869–877.

    Google Scholar 

  13. Freyer, F., Becker, R., Dinse, H. R., & Ritter, P. (2013). State-dependent perceptual learning. The Journal of Neuroscience, 7(33), 2900–2907. https://doi.org/10.1523/JNEUROSCI.4039-12.2013

    Article  Google Scholar 

  14. Gilbert, C. D., & Sigman, M. (2000). Learning to find a shape. Nature Neuroscience, 3(3), 264-269. https://doi.org/10.1038/72979

    Article  PubMed  Google Scholar 

  15. Gilbert, C. D., Li, W., & Piech, V. (2009). Perceptual learning and adult cortical plasticity. The Journal of Physiology, 587(12), 2743–2751. https://doi.org/10.1113/jphysiol.2009.171488

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Signal but not noise changes with perceptual learning. Nature, 402(6758), 176–178. https://doi.org/10.1038/46027

    Article  PubMed  Google Scholar 

  17. Gori, S., & Facoetti, A. (2014). Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vision Research, 99, 78–87. https://doi.org/10.1016/j.visres.2013.11.011

    Article  PubMed  Google Scholar 

  18. Huang, C., Zhou, Y., & Lu, Z. (2008). Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 4068–4073. https://doi.org/10.1073/pnas.0800824105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang, J., Liang, J., Zhou, Y., & Liu, Z. (2017). Transfer in motion discrimination learning was no greater in double training than in single training. Journal of Vision, 17(6), 7, 1–10. https://doi.org/10.1167/17.6.7

    Article  PubMed  Google Scholar 

  20. Hung, S. C., & Seitz, A. R. (2014). Prolonged training at threshold promotes robust retinotopic specificity in perceptual learning. Journal of Neuroscience, 34(25), 8423–8431. https://doi.org/10.1523/JNEUROSCI.0745-14.2014

    Article  PubMed  Google Scholar 

  21. Jehee, J. F. M., Ling, S., Swisher, J. D., van Bergen, R. S., & Tong, F. (2012). Perceptual learning selectively refines orientation representations in early visual cortex. Journal of Neuroscience, 32(47), 16747–16753. https://doi.org/10.1523/JNEUROSCI.6112-11.2012

    Article  PubMed  Google Scholar 

  22. Jeter, P. E., Dosher, B. A., Petrov, A., & Lu, Z. L. (2009). Task precision at transfer determines specificity of perceptual learning. Journal of Vision, 9(3), 1, 1–13. https://doi.org/10.1167/9.3.1

    Article  PubMed  Google Scholar 

  23. Lengyel, G., & Fiser, J. (2019). The relationship between initial threshold, learning, and generalization in perceptual learning. Journal of Vision, 19(4), 28. https://doi.org/10.1167/19.4.28

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, R. W., Klein, S. A. & Levi, D. M. (2008). Prolonged perceptual learning of positional acuity in adult amblyopia: Perceptual template retuning dynamics. Journal of Neuroscience, 28(52), 14223–14229. https://doi.org/10.1523/JNEUROSCI.4271-08.2008

    Article  PubMed  Google Scholar 

  25. Liao, M., Zhao, H., Liu, L., Li, Q., Dai, Y., Zhang, Y., & Zhou, Y. (2016). Training to improve contrast sensitivity in amblyopia: correction of high-order aberrations. Scientific Reports, 6(1), 35702. https://doi.org/10.1038/srep35702

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, Z., & Weinshall, D. (1999). Mechanisms of generalization perceptual learning. Vision Research, 40(1), 97-109. https://doi.org/10.1016/S0042-6989(99)00140-6

    Article  Google Scholar 

  27. Lu, Z., Hua, T., Huang, C., Zhou, Y., & Dosher, B. A. (2011). Visual perceptual learning. Neurobiology of Learning and Memory, 95(2), 145–151. https://doi.org/10.1016/j.nlm.2010.09.010

    Article  PubMed  Google Scholar 

  28. Lu, Z., Lin, Z., & Dosher, B. A. (2016). Translating perceptual learning from the laboratory to applications. Trends in Cognitive Sciences, 20(8), 561–563. https://doi.org/10.1016/j.tics.2016.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maniglia, M., Pavan, A., Sato, G., Contemori, G., Montemurro, S., Battaglini, L., & Casco, C. (2016). Perceptual learning leads to long lasting visual improvement in patients with central vision loss. Restorative Neurology and Neuroscience, 34(5), 697–720. https://doi.org/10.3233/RNN-150575

    Article  PubMed  Google Scholar 

  30. Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725–2732. https://doi.org/10.1523/JNEUROSCI.3963-08.2009

    Article  PubMed  Google Scholar 

  31. McGovern, D. P., Webb, B. S., & Peirce, J. W. (2012). Transfer of perceptual learning between different visual tasks. Journal of Vision, 12(11), 4. https://doi.org/10.1167/12.11.4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mishra, J., Rolle, C., & Gazzaley, A. (2015). Neural plasticity underlying visual perceptual learning in aging. Brain Research, 1612, 140–151. https://doi.org/10.1016/j.brainres.2014.09.009

    Article  PubMed  Google Scholar 

  33. Muller-Gass, A., Duncan, M., & Campbell, K. (2017). Brain states predict individual differences in perceptual learning. Personality and Individual Differences, 118, 29–38. https://doi.org/10.1016/j.paid.2017.03.066

    Article  Google Scholar 

  34. Narasimhan, S., & Giaschi, D. (2012). The effect of dot speed and density on the development of global motion perception. Vision Research, 62, 102–107. https://doi.org/10.1016/j.visres.2012.02.016

    Article  PubMed  Google Scholar 

  35. Perez, V. B., Tarasenko, M., Miyakoshi, M., Pianka, S. T., Makeig, S. D., Braff, D. L., Swerdlow, N. R., & Light, G. A. (2017). Mismatch negativity is a sensitive and predictive biomarker of perceptual learning during auditory cognitive training in schizophrenia. Neuropsychopharmacology, 42(11), 2206–2213. https://doi.org/10.1038/npp.2017.25

    Article  PubMed  PubMed Central  Google Scholar 

  36. Polat, U., Schor, C., Tong, J., Zomet, A., Lev, M., Yehezkel, O., Sterkin, A., & Levi, D. M. (2012). Training the brain to overcome the effect of aging on the human eye. Scientific Reports, 2(1), 278. https://doi.org/10.1038/srep00278

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shen, Y., Dai, W., & Richards, V. M. (2015). A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure. Behavior Research Methods, 47(1), 13–26. https://doi.org/10.3758/s13428-014-0450-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song, Y., Peng, D., Lu, C., Liu, C., Li, X., Liu, P., Qu, Z., & Ding, Y. (2007). An event-related potential study on perceptual learning in grating orientation discrimination. NeuroReport, 18(9), 945–948. https://doi.org/10.1097/WNR.0b013e3281527795

    Article  PubMed  Google Scholar 

  39. Song, Y., Sun, L., Wang, Y., Zhang, X., Kang, J., Ma, X., Yang, B., Guan, Y., & Ding, Y. (2010). The effect of short-term training on cardinal and oblique orientation discrimination: An ERP study. International Journal of Psychophysiology, 75(3), 241–248. https://doi.org/10.1016/j.ijpsycho.2009.11.007

    Article  PubMed  Google Scholar 

  40. Sterkin, A., Levy, Y., Pokroy, R., Lev, M., Levian, L., Doron, R., Yehezkel, O., Fried, M., Frenkel-Nir, Y., & Gordon, B. (2018). Vision improvement in pilots with presbyopia following perceptual learning. Vision Research, 152, 61–73. https://doi.org/10.1167/14.10.1173

    Article  PubMed  Google Scholar 

  41. Wang, Y., Song, Y., Qu, Z., & Ding, Y. (2010). Task difficulty modulates electrophysiological correlates of perceptual learning. International Journal of Psychophysiology, 75(3), 234-240. https://doi.org/10.1016/j.ijpsycho.2009.11.006

    Article  PubMed  Google Scholar 

  42. Wang, F., Huang, J., Lv, Y., Ma, X., Yang, B., Wang, E., Du, B., Li, W. and Song, Y., (2016). Predicting perceptual learning from higher-order cortical processing. NeuroImage, 124, 682–692. https://doi.org/10.1016/j.neuroimage.2015.09.024

    Article  PubMed  Google Scholar 

  43. Wu, D., Zhang, P., Li, C., Liu, N., Jia, W., Chen, G., Ren, W., Sun, Y., & Xiao, W. (2020). Perceptual learning at higher trained cutoff spatial frequencies induces larger visual improvements. Frontiers in Psychology, 11, 265. https://doi.org/10.3389/fpsyg.2020.00265

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xi, J., Jia, W., Feng, L., Lu, Z., & Huang, C. (2014). perceptual learning improves stereoacuity in amblyopia. Investigative Ophthalmology & Visual Science, 55(4), 2384–2391. https://doi.org/10.1167/iovs.13-12627

    Article  Google Scholar 

  45. Xi, J., Zhang, P., Jia, W., Chen, N., Yang, J., Wang, G., Dai, Y., Zhang, Y., & Huang, C. (2020). Multi-stage cortical plasticity induced by visual contrast learning. Frontiers in Neuroscience, 14, 555701. https://doi.org/10.3389/fnins.2020.555701

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xiao, L., Zhang, J., Wang, R., Klein, S. A., Levi, D. M., & Yu, C. (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Current Biology, 18(24), 1922–1926. https://doi.org/10.1016/j.cub.2008.10.030

    Article  PubMed  Google Scholar 

  47. Yan, F., Zhou, J., Zhao, W., Li, M., Xi, J., Lu, Z., & Huang, C. (2015). Perceptual learning improves neural processing in myopic vision. Journal of Vision, 15(10), 12, 1–14. https://doi.org/10.1167/15.10.12

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yehezkel, O., Sterkin, A., Lev, M., Levi, D. M., & Polat, U. (2016). Gains following perceptual learning are closely linked to the initial visual acuity. Scientific Reports, 6, 25188. https://doi.org/10.1038/srep25188

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yu, C., Klein, S. A., & Levi, D. M. (2004). Perceptual learning in contrast discrimination and the (minimal) role of context. Journal of Vision, 4(3), 169–182. https://doi.org/10.1167/4.3.4

    Article  PubMed  Google Scholar 

  50. Zhang, P., Hou, F., Yan, F., Xi, J., Lin, B., Zhao, J., Yang, J., Chen, G., Zhang, M., He, Q., Dosher, B. A., Lu, Z., & Huang, C. (2018). High reward enhances perceptual learning. Journal of Vision, 18(8), 11, 1–21. https://doi.org/10.1167/18.8.11

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, P., Zhao, Y., Dosher, B. A., & Lu, Z. (2019). Assessing the detailed time course of perceptual sensitivity change in perceptual learning. Journal of Vision, 19(5), 9, 1–19. https://doi.org/10.1167/19.5.9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhou, Y., Huang, C., Xu, P., Tao, L., Qiu, Z., Li, X., & Lu, Z. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research, 46(5), 739–750. https://doi.org/10.1016/j.visres.2005.07.031

    Article  PubMed  Google Scholar 

  53. Zhou, J., Zhang, Y., Dai, Y., Zhao, H., Liu, R., Hou, F., Liang, B., Hess, R. F., & Zhou, Y. (2012). The eye limits the brain's learning potential. Scientific Reports, 2, 364. https://doi.org/10.1038/srep00364

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the individuals who participated in this study.

Author information

Affiliations

Authors

Contributions

D.W. conceived and designed the experiments. P.X. and Y.Z. collected the data. D.W. and K.S. analyzed the data and wrote the draft manuscript. N.L. and W.X. provided valuable comments.

Corresponding author

Correspondence to Wei Xiao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1887 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Xu, P., Zhou, Y. et al. The effect of initial performance on motion perception improvements is modulated by training method. Atten Percept Psychophys (2021). https://doi.org/10.3758/s13414-021-02381-3

Download citation

Keywords

  • Perceptual learning
  • Psychometric function
  • Initial performance
  • Training method
  • Global motion perception