Assman, P., & Summerfield, Q. (1990). Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies. Journal of the Acoustical Society of America, 88(2), 680-697.
Article
Google Scholar
Bacon, S. P., Opie, J. M., & Montoya, D. Y. (1998). The effects of hearing loss and noise masking on the masking release for speech in temporally complex backgrounds. Journal of Speech and Hearing Research, 41, 549-563.
Article
Google Scholar
Bianchi, F., Santurette, S., Wendt, D., & Dau, T. (2016). Pitch discrimination in musicians and non-musicians: Effects of harmonic resolvability and processing effort. Journal of the Association for Research in Otolaryngology, 17(1), 69-79.
PubMed
Article
Google Scholar
Boebinger, D., Evans, S., Rosen, S., Lima, C. s. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. Journal of the Acoustical Society of America, 137, 378-387.
Article
Google Scholar
Boets, B., Ghesquière, P., van Wieringen, A., & Wouters, J. (2007). Speech perception in preschoolers at family risk for dyslexia: Relations with low-level auditory processing and phonological ability. Brain and Language, 101, 19-30.
PubMed
Article
Google Scholar
Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press.
Book
Google Scholar
Buus, S., Schorer, E., Florentine, M., & Zwicker, E. (1986). Detection of simple and complex tones in fixed and random conditions. The Journal of the Acoustical Society of America, 79(S1), S48-S48.
Article
Google Scholar
Buus, S., Florentine, M., & Poulsen, T. (1997). Temporal integration of loudness, loudness discrimination, and the form of the loudness function. Journal of the Acoustical Society of America, 101, 669-680.
Article
Google Scholar
Cameron, S., Dillon, H., & Newall, P. (2006). The listening in spatialized noise test: An auditory processing disorder study. Journal of the American Academy of Audiology, 17, 306-320.
PubMed
Article
Google Scholar
Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465-471.
PubMed
Article
Google Scholar
Carlyon, R. P., & Sloan, E. P. (1987). The “overshoot”effect and sensory hearing impairment. The Journal of the Acoustical Society of America, 82(3), 1078-1081.
PubMed
Article
Google Scholar
Carlyon, R. P., & Stubbs, R. J. (1989). Detecting single-cycle frequency modulation imposed on sinusoidal, harmonic, and inharmonic carriers. The Journal of the Acoustical Society of America, 85(6), 2563-2574.
Article
Google Scholar
Chalikia, M. H., & Bregman, A. S. (1993). The perceptual segregation of simultaneous vowels with harmonic, shifted, or random components. Perception and Psychophysics, 53(2), 125-133.
PubMed
Article
Google Scholar
Clayton, K. K., Swaminathan, J., Yazdanbakhsh, A., Zuk, J., Patel, A. D., & Kidd Jr., G. (2016). Executive function, visual attention and the cocktail party problem in musicians and non-musicians. PLoS ONE, 11(7), e0157638.
Coffey, E. B., Mogilever, N. B., & Zatorre, R. J. (2017). Speech-in-noise perception in musicians: A review. Hearing Research, 352, 49-69.
PubMed
Article
Google Scholar
Culling, J. F., & Summerfield, Q. (1995a). Perceptual separation of concurrent speech sounds: Absence of across-frequency grouping by common interaural delay. Journal of the Acoustical Society of America, 98(2), 785-797.
Article
Google Scholar
Culling, J. F., & Summerfield, Q. (1995b). The role of frequency modulation in the perceptual segregation of concurrent vowels. The Journal of the Acoustical Society of America, 98(2), 837-846.
PubMed
Article
Google Scholar
Cusack, R., Decks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 643-656.
PubMed
Google Scholar
Darwin, C. J. (1981). Perceptual grouping of speech components differing in fundamental frequency and onset-time. Quarterly Journal of Experimental Psychology, 33, 185-207.
Article
Google Scholar
Darwin, C. J. (1997). Auditory grouping. Trends in Cognitive Sciences, 1, 327-333.
PubMed
Article
Google Scholar
Darwin, C. J., & Ciocca, V. (1992). Grouping in pitch perception: effects of onset asynchrony and ear of presentation of a mistuned component. Journal of the Acoustical Society of America, 91, 3381-3390.
Article
Google Scholar
Darwin, C. J., & Hukin, R. W. (1997). Perceptual segregation of a harmonic from a vowel by interaural time difference and frequency proximity. Journal of the Acoustical Society of America, 102(4), 2316-2324.
Article
Google Scholar
Darwin, C. J., Brungart, D. S., & Simpson, B. D. (2003). Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. Journal of the Acoustical Society of America, 114(5), 2913-2922.
Article
Google Scholar
de Cheveigne, A., McAdams, S., Laroche, J., & Rosenberg, M. (1995). Identification of concurrent harmonic and inharmonic vowels: A test of the theory of harmonic cancellation and enhancement. Journal of the Acoustical Society of America, 97(6), 3736-3748.
Article
Google Scholar
de Cheveigne, A., Kawahara, H., Tsuzaki, M., & Aikawa, K. (1997a). Concurrent vowel identification. I. Effects of relative amplitude and F0 difference. Journal of the Acoustical Society of America, 101(5), 2839-2847.
Article
Google Scholar
de Cheveigne, A., McAdams, S., & Marin, C. M. H. (1997b). Concurrent vowel identification. II. Effects of phase, harmonicity, and task. Journal of the Acoustical Society of America, 101(5), 2848-2856.
Article
Google Scholar
Dellacherie, D., Roy, M., Hugueville, L., Peretz, I., & Samson, S. (2010). The effect of musical experience on emotional self-reports and psychophysiological responses to dissonance. Psychophysiology, 48, 337-349.
Article
Google Scholar
Demany, L., & Ramos, C. (2005). On the binding of successive sounds: Perceiving shifts in nonperceived pitches. Journal of the Acoustical Society of America, 117(2), 833-841.
Article
Google Scholar
Dole, M., Hoen, M., & Meunier, F. (2012). Speech-in-noise perception deficit in adults with dyslexia: Effects of background type and listening configuration. Neuropsychologia, 50, 1543-1552.
PubMed
Article
Google Scholar
Dowling, W. J., & Fujitani, D. S. (1971). Contour, interval, and pitch recognition in memory for melodies. The Journal of the Acoustical Society of America, 49, 524-531.
Article
Google Scholar
Dubois, F., Meunier, S., Rabau, G., Poisson, F., & Guyader, G. (2011). Detection of multicomponent signals: Effect of difference in level between components. The Journal of the Acoustical Society of America, 130(5), EL284-EL289.
PubMed
Article
Google Scholar
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
PubMed
Article
Google Scholar
Faulkner, A. (1985). Pitch discrimination of harmonic complex signals: Residue pitch or multiple component discriminations? The Journal of the Acoustical Society of America, 78(6), 1993-2004.
Feng, L., & Wang, X. (2017). Harmonic template neurons in primate auditory cortex underlying complex sound processing. Proceedings of the National Academy of Sciences, E840-E848.
Florentine, M. (1986). Level discrimination of tones as a function of duration. The Journal of the Acoustical Society of America, 79(3), 792-798.
PubMed
Article
Google Scholar
Florentine, M., Buus, S. r., & Bonding, P. (1978). Loudness of complex sounds as a function of the standard stimulus and the number of components. The Journal of the Acoustical Society of America, 64(4), 1036-1040.
PubMed
Article
Google Scholar
Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2001). Spatial release from informational masking in speech recognition. Journal of the Acoustical Society of America, 109(5), 2112-2122.
Article
Google Scholar
Gockel, H., Moore, B. C., Plack, C. J., & Carlyon, R. P. (2006). Effect of noise on the detectability and fundamental frequency discrimination of complex tones. The Journal of the Acoustical Society of America, 120(2), 957-965.
PubMed
Article
Google Scholar
Green, D. M. (1958). Detection of multiple component signals in noise. The Journal of the Acoustical Society of America, 30(10), 904-911.
Article
Google Scholar
Green, D. M. (1960). Auditory detection of a noise signal. The Journal of the Acoustical Society of America, 32(1), 121-131.
Article
Google Scholar
Grimault, N., Micheyl, C., Carlyon, R. P., Arthaud, P., & Collet, L. (2000). Influence of peripheral resolvability on the perceptual segregation of harmonic complex tones differing in fundamental frequency. The Journal of the Acoustical Society of America, 108(1), 263-271.
PubMed
Article
Google Scholar
Hafter, E. R., & Saberi, K. (2001). A level of stimulus representation model for auditory detection and attention. The Journal of the Acoustical Society of America, 110(3), 1489-1497.
PubMed
Article
Google Scholar
Hall, J. W., & Peters, R. W. (1981). Pitch for nonsimultaneous successive harmonics in quiet and noise. Journal of the Acoustical Society of America, 69(2), 509-513.
Article
Google Scholar
Hartmann, W. M., McAdams, S., & Smith, B. K. (1990). Hearing a mistuned harmonic in an otherwise periodic complex tone. Journal of the Acoustical Society of America, 88, 1712-1724.
Article
Google Scholar
Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. Journal of the Acoustical Society of America, 115(2), 833-843.
Article
Google Scholar
Hellman, R. P., & Zwislocki, J. (1961). Some factors affecting the estimation of loudness. The Journal of the Acoustical Society of America, 33(5), 687-694.
Article
Google Scholar
Hillenbrand, J., Getty, L. A., Clark, M. J., & Wheeler, K. (1995). Acoustic characteristics of American English vowels. Journal of the Acoustical Society of America, 97(5), 3099-3111.
Article
Google Scholar
Houtgast, T. (1976). Subharmonic pitches of a pure tone at low S/N ratio. Journal of the Acoustical Society of America, 60(2), 405-409.
Article
Google Scholar
Ihlefeld, A., & Shinn-Cunningham, B. (2008). Spatial release from energetic and informational masking in a divided speech identification task. Journal of the Acoustical Society of America, 123(6), 4380-4392.
Article
Google Scholar
JASP, Version 0.13.1. In. (2020). JASP Team.
Josupeit, A., & Hohmann, V. (2017). Modeling speech localization, talker identification, and word recognition in a multi-talker setting. The Journal of the Acoustical Society of America, 142(1), 35-54.
PubMed
Article
Google Scholar
Josupeit, A., Schoenmaker, E., van de Par, S., & Hohmann, V. (2020). Sparse periodicity-based auditory features explain human performance in a spatial multitalker auditory scene analysis task. European Journal of Neuroscience, 51(5), 1353-1363.
Article
Google Scholar
Kalluri, S., Depireux, D. A., & Shamma, S. A. (2008). Perception and cortical neural coding of harmonic fusion in ferrets. The Journal of the Acoustical Society of America, 123(5), 2701-2716.
PubMed
PubMed Central
Article
Google Scholar
Kawahara, H., & Morise, M. (2011). TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. SADHANA, 36(5), 713-722.
Article
Google Scholar
Kell, A. J. E., & McDermott, J. H. (2019). Invariance to background noise as a signature of non-primary auditory cortex. Nature Communications, 10(1), 1-11.
Kell, A. J. E., Yamins, D. L. K., Shook, E. N., Norman-Haignere, S., & McDermott, J. H. (2018). A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. Neuron, 98, 630-644.
PubMed
Article
Google Scholar
Khalighinejad, B., Herrero, J. L., Mehta, A. D., & Mesgarani, N. (2019). Adaptation of the human auditory cortex to changing background noise. Nature Communications, 10(1), 2509.
PubMed
PubMed Central
Article
Google Scholar
Kidd Jr., G., Mason, C. R., Brantley, M. A., & Owen, G. A. (1989). Roving-level tone-in-noise detection. The Journal of the Acoustical Society of America, 86(4), 1310-1317.
Kishon-Rabin, L., Amir, O., Vexler, Y., & Zaltz, Y. (2001). Pitch discrimination: are professional musicians better than non-musicians? Journal of Basic and Clinical Physiology and Pharmacology, 12, 125-143.
PubMed
Article
Google Scholar
Kleiner, M., Brainard, D., & Pelli, D. (2007). What's new in Psychtoolbox-3? Perception, 36(ECVP Abstract Suppl), 14.
Lagace, J., Jutras, B., & Gagne, J. (2010). Auditory processing disorder and speech perception problems in noise: Finding the underlying origin. American Journal of Audiology, 19, 17-25.
PubMed
Article
Google Scholar
Lentz, J. J., Richards, V. M., & Matiasek, M. R. (1999). Different auditory filter bandwidth estimates based on profile analysis, notched noise, and hybrid tasks. The Journal of the Acoustical Society of America, 106(5), 2779-2792.
PubMed
Article
Google Scholar
Leong, U.-C., Schwarz, D. M., Henry, K. S., & Carney, L. H. (2020). Sensorineural hearing loss diminishes use of temporal envelope cues: evidence from roving-level tone-in-noise detection. Ear and Hearing, 41(4), 1009-1019.
PubMed
PubMed Central
Article
Google Scholar
Madsen, S., Marschall, M., Dau, T., & Oxenham, A. (2019). Speech perception is similar for musicians and non-musicians across a wide range of conditions. Scientific Reports, 9(1), 1-10.
Google Scholar
Maxwell, B. N., Richards, V. M., & Carney, L. H. (2020). Neural fluctuation cues for simultaneous notched-noise masking and profile-analysis tasks: Insights from model midbrain responses. The Journal of the Acoustical Society of America, 147(5), 3523-3537.
PubMed
PubMed Central
Article
Google Scholar
McAdams, S. (1989). Segregation of concurrent sounds. I.:Effects of frequency modulation coherence. Journal of the Acoustical Society of America, 86, 2148-2159.
Article
Google Scholar
McDermott, J. H. (2009). The cocktail party problem. Current Biology, 19, R1024-R1027.
PubMed
Article
Google Scholar
McDermott, J. H., Keebler, M. V., Micheyl, C., & Oxenham, A. J. (2010a). Musical intervals and relative pitch: Frequency resolution, not interval resolution, is special. The Journal of the Acoustical Society of America, 128(4), 1943-1951.
PubMed
PubMed Central
Article
Google Scholar
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010b). Individual differences reveal the basis of consonance. Current Biology, 20, 1035-1041.
PubMed
Article
Google Scholar
McDermott, J. H., Ellis, D. P. W., & Kawahara, H. (2012). Inharmonic speech: A tool for the study of speech perception and separation. Proceedings of SAPA-SCALE Conference 2012, 114--117.
McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535, 547-550.
PubMed
Article
Google Scholar
McLachlan, N. M., Marco, D. J. T., & Wilson, S. J. (2013). The musical environment and auditory plasticity: hearing the pitch of percussion. Frontiers in Psychology, 4(768), 1-6.
Google Scholar
McPherson, M. J., & McDermott, J. H. (2018). Diversity in pitch perception revealed by task dependence. Nature Human Behavior, 2, 52-66.
Article
Google Scholar
McPherson, M. J., & McDermott, J. H. (2020). Time-dependent discrimination advantages for harmonic sounds suggest efficient coding for memory. Proceedings of the National Academy of Sciences, 117(50), 32169-32180.
Article
Google Scholar
McPherson, M. J., Dolan, S. E., Durango, A., Ossandon, T., Valdés, J., Undurraga, E. A., Jacoby, N., Godoy, R. A., & McDermott, J. H. (2020). Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals. Nature Communications, 11, 2786.
PubMed
PubMed Central
Article
Google Scholar
McWalter, R. I., & McDermott, J. H. (2018). Adaptive and selective time-averaging of auditory scenes. Current Biology, 28, 1405-1418.
PubMed
Article
Google Scholar
McWalter, R., & McDermott, J. H. (2019). Illusory sound texture reveals multi-second statistical completion in auditory scene analysis. Nature Communications, 10(1), 5096.
PubMed
PubMed Central
Article
Google Scholar
Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2014). Mechanisms of noise robust representation of speech in primary auditory cortex. Proceedings of the National Academy of Sciences, 111(18), 6792-6797.
Article
Google Scholar
Micheyl, C., & Oxenham, A. J. (2010). Pitch, harmonicity and concurrent sound segregation: Psychoacoustical and neurophysiological findings. Hearing Research, 266, 36-51.
PubMed
Article
Google Scholar
Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 219, 36-47.
PubMed
Article
Google Scholar
Micheyl, C., Ryan, C. M., & Oxenham, A. J. (2012). Further evidence that fundamental-frequency difference limens measure pitch discrimination. The Journal of the Acoustical Society of America, 131(5), 3989-4001.
PubMed
PubMed Central
Article
Google Scholar
Młynarski, W., & McDermott, J. H. (2019). Ecological origins of perceptual grouping principles in the auditory system. Proceedings of the National Academy of Sciences, 116(50), 25355-25364.
Article
Google Scholar
Moore, B. C. J., & Glasberg, B. R. (1990). Frequency discrimination of complex tones with overlapping and non-overlapping harmonics. The Journal of the Acoustical Society of America, 87(5), 2163-2177.
Moore, B. C., & Glasberg, B. R. (1991). Effects of signal-to-noise ratio on the frequency discrimination of complex tones with overlapping or nonoverlapping harmonics. The Journal of the Acoustical Society of America, 89(6), 2858-2865.
Article
Google Scholar
Moore, G. A., & Moore, B. C. J. (2003). Perception of the low pitch of frequency-shifted complexes. Journal of the Acoustical Society of America, 113, 977-985.
Article
Google Scholar
Moore, B. C., Peters, R. W., & Glasberg, B. R. (1985). Thresholds for the detection of inharmonicity in complex tones. The Journal of the Acoustical Society of America, 77(5), 1861-1867.
PubMed
Article
Google Scholar
Moore, B. C. J., Glasberg, B. R., & Peters, R. W. (1986). Thresholds for hearing mistuned partials as separate tones in harmonic complexes. Journal of the Acoustical Society of America, 80, 479-483.
Article
Google Scholar
Moore, B. C. J., Huss, M., Vickers, D. A., Glasberg, B. R., & Alcántara, J. I. (2000). A test for the diagnosis of dead regions in the cochlea. British Journal of Audiology, 34(4), 205-224.
PubMed
Article
Google Scholar
Moore, R. C., Lee, T., & Theunissen, F. E. (2013). Noise-invariant neurons in the avian auditory cortex: hearing the song in noise. PLoS computational biology, 9(3), e1002942.
PubMed
PubMed Central
Article
Google Scholar
Norman-Haignere, S. V., & McDermott, J. H. (2016). Distortion products in auditory fMRI research: Measurements and solutions. Neuroimage, 129, 401-413.
Norman-Haignere, S. V., Kanwisher, N. G., McDermott, J. H., & Conway, B. R. (2019). Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nature Neuroscience, 22, 1057-1060.
PubMed
PubMed Central
Article
Google Scholar
Oxenham, A. J. (2008). Pitch perception and auditory stream segregation: Implications for hearing loss and cochlear implants. Trends in Amplification, 12(4), 316-331.
PubMed
PubMed Central
Article
Google Scholar
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PLoS ONE, 6(5), e18082.
PubMed
PubMed Central
Article
Google Scholar
Patterson, R. D. (1990). Auditory warning sounds in the work environment. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 327(1241), 485-492.
PubMed
Article
Google Scholar
Plack, C. J., Barker, D., & Prendergast, G. (2014). Perceptual consequences of "hidden" hearing loss. Trends in Hearing, 18, 1-11.
Article
Google Scholar
Popham, S., Boebinger, D., Ellis, D. P., Kawahara, H., & McDermott, J. H. (2018). Inharmonic speech reveals the role of harmonicity in the cocktail party problem. Nature Communications, 9(1), 2122.
PubMed
PubMed Central
Article
Google Scholar
Pressnitzer, D., & Patterson, R. D. (2001). Distortion products and the perceived pitch of harmonic complex tones. In D. J. Breebaart (Ed.), Physiological and Psychophysical Bases of Auditory Function (pp. 97-104). Shaker Publishing.
Pressnitzer, D., Patterson, R. D., & Krumbholz, K. (2001). The lower limit of melodic pitch. Journal of the Acoustical Society of America, 109(5), 2074-2084.
Article
Google Scholar
Rabinowitz, N. C., Willmore, B. D. B., King, A. J., & Schnupp, J. W. (2013). Constructing noise-invariant representations of sound in the auditory pathway. PLoS Biology, 11(11), e1001710.
PubMed
PubMed Central
Article
Google Scholar
Rasch, R. A. (1978). The perception of simultaneous notes such as in polyphonic music. Acustica, 40, 21-33.
Google Scholar
Roberts, B., & Brunstrom, J. M. (1998). Perceptual segregation and pitch shifts of mistuned components in harmonic complexes and in regular inharmonic complexes. Journal of the Acoustical Society of America, 104(4), 2326-2338.
Article
Google Scholar
Roberts, B., & Holmes, S. D. (2006). Grouping and the pitch of a mistuned fundamental component: effects of applying simultaneous multiple mistunings to the other harmonics. Hearing Research, 222, 79-88.
PubMed
Article
Google Scholar
Rossi-Katz, J. A., & Arehart, K. H. (2005). Effects of cochlear hearing loss on perceptual grouping cues in competing-vowel perception. Journal of the Acoustical Society of America, 118(4), 2588-2598.
Article
Google Scholar
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225-237.
Article
Google Scholar
Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356-374.
Article
Google Scholar
Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2012). Why middle-aged listeners have trouble hearing in everyday settings. Current Biology, 22(15), 1417-1422.
PubMed
Article
Google Scholar
Sarampalis, A., Kalluri, S., Edwards, B., & Hafter, E. (2009). Objective measures of listening effort: Effects of background noise and noise reduction. Journal of Speech, Language, and Hearing Research, 52, 12301240.
Shackleton, T. M., & Carlyon, R. P. (1994). The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. The Journal of the Acoustical Society of America, 95(6), 3529-3540.
PubMed
Article
Google Scholar
Shofner, W. P., & Chaney, M. (2013). Processing pitch in a nonhuman mammal (chinchilla laniger). Journal of Comparative Psychology, 127(2), 142-153.
PubMed
Article
Google Scholar
Slaney, M. (1998). Auditory toolbox. Interval Research Corporation, Tech. Rep, 10(1998), 1194.
Smoorenburg, G. F. (1992). Speech reception in quiet and in noisy conditions by individuals with noise-induced hearing loss in relation to their tone audiogram. The Journal of the Acoustical Society of America, 91(1, 421-437).
Song, X., Osmanski, M. S., Guo, Y., & Wang, X. (2016). Complex pitch perception mechanisms are shared by humans and a New World monkey. Proceedings of the National Academy of Sciences, 113(3), 781-786.
Article
Google Scholar
Spiegel, M. F., & Watson, C. S. (1984). Performance on frequency-discrimination tasks by musicians and non-musicians. Journal of the Acoustical Society of America, 76, 1690-1695.
Article
Google Scholar
Steinmetzger, K., & Rosen, S. (2015). The role of periodicity in perceiving speech in quiet and in background noise. Journal of the Acoustical Society of America, 138(6), 3586-3599.
Article
Google Scholar
Swaminathan, J., Mason, C. R., Streeter, T. M., Best, V., Kidd Jr., G., & Patel, A. (2015). Musical training, individual differences and the cocktail party problem. Scientific Reports, 5, 11628.
Town, S. M., Wood, K. C., & Bizley, J. K. (2019). Signal processing in auditory cortex underlies degraded speech sound discrimination in noise. bioRxiv, 833558.
Traer, J., Norman-Haignere, S. V., & McDermott, J. H. (2021). Causal inference in environmental sound recognition. Cognition, 214, 104627.
PubMed
Article
Google Scholar
Tremblay, K. L., Piskosz, M., & Souza, P. (2003). Effects of age and age-related hearing loss on the neural representation of speech cues. Clinical Neurophysiology, 114(7), 1332-1343.
PubMed
Article
Google Scholar
Walker, K. M. M., Gonzalez, R., Kang, J. Z., McDermott, J. H., & King, A. J. (2019). Across-species differences in pitch perception are consistent with differences in cochlear filtering. eLIFE, 8, e41626.
PubMed
PubMed Central
Article
Google Scholar
Weiss, M. W., Cirelli, L. K., McDermott, J. H., & Trehub, S. E. (2020). Development of consonance preferences in Western listeners. Journal of Experimental Psychology. General, 149(4), 634-649.
Woods, K. J. P., & McDermott, J. H. (2015). Attentive tracking of sound sources. Current Biology, 25, 2238-2246.
PubMed
Article
Google Scholar
Woods, K. J. P., & McDermott, J. (2018). Schema learning for the cocktail party problem. Proceedings of the National Academy of Sciences, 115, E3313-E3322.
Google Scholar
Woods, K. J. P., Siegel, M. H., Traer, J., & McDermott, J. H. (2017). Headphone screening to facilitate web-based auditory experiments. Attention, Perception, and Psychophysics, 79, 2064-2072.
Article
Google Scholar
Ziegler, J. C., Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732-745.
PubMed
Article
Google Scholar
Zwicker, E. (1965). Temporal effects in simultaneous masking and loudness. The Journal of the Acoustical Society of America, 38(1), 132-141.
PubMed
Article
Google Scholar