Skip to main content

Long-term training reduces the responses to the sound-induced flash illusion

Abstract

The sound-induced flash illusion (SiFI) is a robust auditory-dominated multisensory integration phenomenon that is used as a reliable indicator to assess multisensory integration. Previous studies have indicated that the SiFI effect is correlated with perceptual sensitivity. However, to date, there is no consensus regarding how it corresponds to sensitivity with long-term training. The present study adopted the classic SiFI paradigm with feedback training to investigate the effect of a week of long-term training on the SiFI effect. Both the training group and control group completed a pretest and a posttest before and after the perceptual training; however, only the training group was required to complete 7-day behavioral training. The results showed that (1) long-term training could reduce the response of fission and fusion illusions by improving perceptual sensitivity and that (2) there was a “plateau effect” that emerged during the training stage, which tended to stabilize by the fifth day. These findings demonstrated that the SiFI effect could be modified with long-term training by ameliorating perceptual sensitivity, especially in terms of the fission illusion. Therefore, the present study supplements perceptual training in SiFI domains and provides evidence that the SiFI could be used as an assessment intervention to improve the efficiency of multisensory integration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abadi, R. V., & Murphy, J. S. (2014). Phenomenology of the sound-induced flash illusion. Experimental Brain Research, 232(7), 2207–2220. https://doi.org/10.1007/s00221-014-3912-2

    Article  PubMed  Google Scholar 

  2. Aberg, K. C., & Herzog, M. H. (2012). Different types of feedback change decision criterion and sensitivity differently in perceptual learning. Journal of Vision, 12(3), 3–3. https://doi.org/10.1167/12.3.3

    Article  PubMed  Google Scholar 

  3. Adini, Y., Sagi, D., & Tsodyks, M. (2002). Context-enabled learning in the human visual system. Nature, 415(6873), 790–793. https://doi.org/10.1038/415790a

    Article  PubMed  Google Scholar 

  4. Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401–406. https://doi.org/10.1038/387401a0

    Article  PubMed  Google Scholar 

  5. Alais, D., Newell, F., & Mamassian, P. (2010). Multisensory processing in review: From physiology to behaviour. Seeing and Perceiving, 23(1), 3–38. https://doi.org/10.1163/187847510X488603

    Article  PubMed  Google Scholar 

  6. Andersen, T. S., Tiippana, K., & Sams, M. (2004). Factors influencing audiovisual fission and fusion illusions. Cognitive Brain Research, 21(3), 301–308. https://doi.org/10.1016/j.cogbrainres.2004.06.004

    Article  PubMed  Google Scholar 

  7. Apthorp, D., Alais, D., & Boenke, L. T. (2013). Flash illusions induced by visual, auditory, and audiovisual stimuli. Journal of Vision, 13(5), 3:1–15. https://doi.org/10.1167/13.5.3

    Article  Google Scholar 

  8. Bidelman, G. M. (2016). Musicians have enhanced audiovisual multisensory binding: Experience-dependent effects in the double-flash illusion. Experimental Brain Research, 234(10), 3037–3047. https://doi.org/10.1007/s00221-016-4705-6

    Article  PubMed  Google Scholar 

  9. Bresciani, J. P., Dammeier, F., & Ernst, M. O. (2008). Tri-modal integration of visual, tactile and auditory signals for the perception of sequences of events. Brain Research Bulletin, 75(6), 753–760. https://doi.org/10.1016/j.brainresbull.2008.01.009

    Article  PubMed  Google Scholar 

  10. Bruns, P., Maiworm, M., & Röder, B. (2014). Reward expectation influences audiovisual spatial integration. Attention, Perception, & Psychophysics, 76(6), 1815–1827. https://doi.org/10.3758/s13414-014-0699-y

    Article  Google Scholar 

  11. Cecere, R., Rees, G., & Romei, V. (2015). Individual differences in alpha frequency drive crossmodal illusory perception. Current Biology, 25(2), 231–235. https://doi.org/10.1016/j.cub.2014.11.034

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chatterjee, G., Wu, D.-A., & Sheth, B. R. (2011). Phantom flashes caused by interactions across visual space. Journal of Vision, 11(2), 14–14. https://doi.org/10.1167/11.2.14

    Article  PubMed  Google Scholar 

  13. Chen, Q., & Zhou, X. (2013). Vision dominates at the preresponse level and audition dominates at the response level in cross-modal interaction: Behavioral and neural evidence. Journal of Neuroscience, 33(17), 7109–7121. https://doi.org/10.1523/JNEUROSCI.1985-12.2013

    Article  PubMed  Google Scholar 

  14. Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic Press.

  15. Colavita, F. B., & Weisberg, D. (1979). A further investigation of visual dominance. Perception & Psychophysics, 25(4), 345–347. https://doi.org/10.3758/BF03198814

    Article  Google Scholar 

  16. Corrow, S. L., Davies-Thompson, J., Fletcher, K., Hills, C., Corrow, J. C., & Barton, J. J. (2019). Training face perception in developmental prosopagnosia through perceptual learning. Neuropsychologia, 134, 107196. https://doi.org/10.1016/j.neuropsychologia.2019.107196

  17. De Gelder, B., & Bertelson, P. (2003). Multisensory integration, perception and ecological validity. Trends in Cognitive Sciences, 7(10), 460–467. https://doi.org/10.1016/j.tics.2003.08.014

    Article  PubMed  Google Scholar 

  18. de Haas, B., Kanai, R., Jalkanen, L., & Rees, G. (2012). Grey matter volume in early human visual cortex predicts proneness to the sound-induced flash illusion. Proceedings of the Royal Society B: Biological Sciences, 279(1749), 4955–4961. https://doi.org/10.1098/rspb.2012.2132

    Article  PubMed  PubMed Central  Google Scholar 

  19. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

    Article  PubMed  PubMed Central  Google Scholar 

  20. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146

    Article  Google Scholar 

  21. Feldman, J. I., Dunham, K., Cassidy, M., Wallace, M. T., Liu, Y., & Woynaroski, T. G. (2018). Audiovisual multisensory integration in individuals with autism spectrum disorder: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 95, 220–234. https://doi.org/10.1016/j.neubiorev.2018.09.020

    Article  Google Scholar 

  22. Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature, 287(5777), 43–44. https://doi.org/10.1038/287043a0

    Article  PubMed  Google Scholar 

  23. Formenti, D., Duca, M., Trecroci, A., Ansaldi, L., Bonfanti, L., Alberti, G., & Iodice, P. (2019). Perceptual vision training in non-sport-specific context: Effect on performance skills and cognition in young females. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-55252-1

    Article  Google Scholar 

  24. Gau, R., & Noppeney, U. (2016). How prior expectations shape multisensory perception. NeuroImage, 124, 876–886. https://doi.org/10.1016/j.neuroimage.2015.09.045

    Article  PubMed  Google Scholar 

  25. Hirst, R. J., McGovern, D. P., Setti, A., Shams, L., & Newell, F. N. (2020). What you see is what you hear: Twenty years of research using the Sound-Induced Flash Illusion. Neuroscience & Biobehavioral Reviews. 118, 759–774.https://doi.org/10.1016/j.neubiorev.2020.09.006

  26. Innes-Brown, H., & Crewther, D. (2009). The impact of spatial incongruence on an auditory-visual illusion. PLoS ONE, 4(7), e6450. https://doi.org/10.1371/journal.pone.0006450

  27. Jack, C. E., & Thurlow, W. R. (1973). Effects of degree of visual association and angle of displacement on the “ventriloquism” effect. Perceptual and Motor Skills, 37(3), 967–979. https://doi.org/10.1177/003151257303700360

    Article  PubMed  Google Scholar 

  28. Kaiser, M., Senkowski, D., Busch, N. A., Balz, J., & Keil, J. (2019). Single trial prestimulus oscillations predict perception of the sound-induced flash illusion. Scientific Reports, 9(1), 1–8. https://doi.org/10.1038/s41598-019-42380-x

    Article  Google Scholar 

  29. Keil, J. (2020). Double flash illusions: current findings and future directions. Frontiers in Neuroscience, 14, 298. https://doi.org/10.3389/fnins.2020.00298

    Article  PubMed  PubMed Central  Google Scholar 

  30. Keil, J., Müller, N., Hartmann, T., & Weisz, N. (2014). Prestimulus beta power and phase synchrony influence the sound-induced flash illusion. Cerebral Cortex, 24(5), 1278–1288. https://doi.org/10.1093/cercor/bhs409

    Article  PubMed  Google Scholar 

  31. Keil, J., & Senkowski, D. (2017). Individual alpha frequency relates to the sound-induced flash illusion. Multisensory Research, 30(6), 565–578. https://doi.org/10.1163/22134808-00002572

    Article  PubMed  Google Scholar 

  32. Kell, C., Kell, C. A., Kriegstein, K. V., Neumann, K., & Giraud, A. L. (2006). Imaging of the recovery from stuttering reveals spontaneous neuroplasticity. Clinical Neurophysiology, 37(1), A114. https://doi.org/10.1055/s-2006-939197

  33. Koelewijn, T., Bronkhorst, A., & Theeuwes, J. (2010). Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychologica, 134(3), 372–384. https://doi.org/10.1016/j.actpsy.2010.03.010

    Article  PubMed  Google Scholar 

  34. Krebs, R. M., Woldorff, M. G., Claus, T., Nils, B., Toemme, N., & Boehler, C. N., Scheich, H., Hopf, J.-M., Duzel, E., Heinze, H.-J., & Schoenfeld, M. A. (2010). High-field fMRI reveals brain activation patterns underlying saccade execution in the human superior colliculus. PLoS ONE, 5(1), e8691. https://doi.org/10.1371/journal.pone.0008691

  35. Kumpik, D. P., Roberts, H. E., King, A. J., & Bizley, J. K. (2014). Visual sensitivity is a stronger determinant of illusory processes than auditory cue parameters in the sound-induced flash illusion. Journal of Vision, 14(7), 12–12. https://doi.org/10.1167/14.7.12

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leonards, U., & Singer, W. (1997). Selective temporal interactions between processing streams with differential sensitivity for colour and luminance contrast. Vision Research, 37(9), 1129–1140. https://doi.org/10.1016/S0042-6989(96)00264-7

    Article  PubMed  Google Scholar 

  37. Lindström, R., Paavilainen, P., Kujala, T., & Tervaniemi, M. (2012). Processing of audiovisual associations in the human brain: Dependency on expectations and rule complexity. Frontiers in Psychology, 3, 159. https://doi.org/10.3389/fpsyg.2012.00159

    Article  PubMed  PubMed Central  Google Scholar 

  38. McCormick, D., & Mamassian, P. (2008). What does the illusory-flash look like? Vision Research, 48(1), 63–69. https://doi.org/10.1016/j.visres.2007.10.010

    Article  PubMed  Google Scholar 

  39. McGurk, H., & Macdonald, J. (1978). Auditory-visual coordination in the first year of life. International Journal of Behavioral Development, 1(3), 229–239. https://doi.org/10.1177/016502547800100303

    Article  Google Scholar 

  40. Meredith, M. A., & Stein, B. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56(3), 640–662. https://doi.org/10.1152/jn.1986.56.3.640

    Article  PubMed  Google Scholar 

  41. Mishra, J., Martinez, A., & Hillyard, S. A. (2008). Cortical processes underlying sound-induced flash fusion. Brain Research, 1242(4), 102–115. https://doi.org/10.1016/j.brainres.2008.05.023

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mishra, J., Martínez, A., &Hillyard, S. A. (2010). Effect of attention on early cortical processes associated with the sound-induced extra flash illusion. Journal of Cognitive Neuroscience, 22(8), 1714–1729. https://doi.org/10.1016/10.1162/jocn.2009.21295

    Article  PubMed  Google Scholar 

  43. Mishra, J., Martinez, A., Sejnowski, T. J., & Hillyard, S. A. (2007). Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. Journal of Neuroscience, 27(15), 4120–4131. https://doi.org/10.1523/JNEUROSCI.4912-06.2007

    Article  PubMed  Google Scholar 

  44. Pilly, P. K., Grossberg, S., & Seitz, A. R. (2010). Low-level sensory plasticity during task irrelevant perceptual learning: Evidence from conventional and double training procedures. Vision Research, 50(4), 424–432. https://doi.org/10.1016/j.visres.2009.09.022

    Article  PubMed  Google Scholar 

  45. Powers, A. R., Hillock, A. R., & Wallace, M. T. (2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29(39), 12265–12274. https://doi.org/10.1523/JNEUROSCI.3501-09.2009

    Article  PubMed  Google Scholar 

  46. Powers, A. R., Hillock-Dunn, A. R., & Wallace, M. T. (2016). Generalization of multisensory perceptual learning. Scientific Reports, 6(1), 1–9. https://doi.org/10.1038/srep23374

    Article  Google Scholar 

  47. Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 869–875. https://doi.org/10.1073/pnas.95.3.869

    Article  PubMed  PubMed Central  Google Scholar 

  48. Repp, B. H. (2000). Compensation for subliminal timing perturbations in perceptual-motor synchronization. Psychological Research, 63(2), 106–128. https://doi.org/10.1007/PL00008170

    Article  PubMed  Google Scholar 

  49. Repp, B. H. (2002). Perception of timing is more context sensitive than sensorimotor synchronization. Perception & Psychophysics, 64(5), 703–716. https://doi.org/10.3758/BF03194738

    Article  Google Scholar 

  50. Rosenthal, O., Shimojo, S., & Shams, L. (2009). Sound-induced flash illusion is resistant to feedback training. Brain Topography, 21(3/4), 185–192. https://doi.org/10.1007/s10548-009-0090-9

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sarro, E. C., & Sanes, D. H. (2011). The cost and benefit of juvenile training on adult perceptual skill. Journal of Neuroscience, 31(14), 5383–5391. https://doi.org/10.1523/JNEUROSCI.6137-10.2011

    Article  PubMed  Google Scholar 

  52. Seitz, A. R., & Dinse, H. R. (2007). A common framework for perceptual learning. Current Opinion in Neurobiology, 17(2), 148–153. https://doi.org/10.1016/j.conb.2007.02.004

    Article  PubMed  Google Scholar 

  53. Seitz, A. R., Kim, R., & Shams, L. (2006). Sound facilitates visual learning. Current Biology, 16(14), 1422–1427. https://doi.org/10.1016/j.cub.2006.05.048

    Article  PubMed  Google Scholar 

  54. Seitz, A. R., Nanez, J. E., Holloway, S. R., & Watanabe, T. (2005a). Visual experience can substantially alter critical flicker fusion thresholds. Human Psychopharmacology, 20(1), 5560. https://doi.org/10.1002/hup.661

    Article  Google Scholar 

  55. Seitz, A. R., Yamagishi, N., Werner, B., Goda, N., Kawato, M., & Watanabe, T. (2005b). Task-specific disruption of perceptual learning. Proceedings of the National Academy of Sciences, 102(41), 14895–14900. https://doi.org/10.1073/pnas.0505765102

    Article  Google Scholar 

  56. Setti, A., & Chan, J. S. (2011). Familiarity of objects affects susceptibility to the sound-induced flash illusion. Neuroscience Letters, 492(1), 19–22. https://doi.org/10.1016/j.neulet.2011.01.042

    Article  PubMed  Google Scholar 

  57. Setti, A., Stapleton, J., Leahy, D., Walsh, C., Kenny, R. A., & Newell, F. N. (2014). Improving the efficiency of multisensory integration in older adults: Audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion. Neuropsychologia, 61, 259–268. https://doi.org/10.1016/j.neuropsychologia.2014.06.027

    Article  PubMed  Google Scholar 

  58. Shams, L., Kamitani, Y., & Shimojo, S. (2000). What you see is what you hear. Nature, 408(12), 2670–2671. https://doi.org/10.4161/hv.26653.

    Article  Google Scholar 

  59. Shams, L., Kamitani, Y., & Shimojo, S. (2002). Visual illusion induced by sound. Cognitive Brain Research, 14(1), 147–152. https://doi.org/10.1016/S0926-6410(02)00069-1

    Article  PubMed  Google Scholar 

  60. Shams, L., Ma, W. J., & Beierholm, U. (2005). Sound-induced flash illusion as an optimal percept. NeuroReport, 16(17), 1923–1927. https://doi.org/10.1097/01.wnr.0000187634.68504.bb

    Article  PubMed  Google Scholar 

  61. Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in Cognitive Sciences, 12(11), 411–417. https://doi.org/10.1016/j.tics.2008.07.006

    Article  PubMed  Google Scholar 

  62. Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255–256. https://doi.org/10.1006/jsvi.1999.2508

    Article  PubMed  Google Scholar 

  63. Stekelenburg, J. J., & Keetels, M. (2016). The effect of synesthetic associations between the visual and auditory modalities on the Colavita effect. Experimental Brain Research, 234(5), 1209–1219. https://doi.org/10.1007/s00221-015-4363-0

    Article  PubMed  Google Scholar 

  64. Strelnikov, K., Rouger, J., Demonet, J. F., Lagleyre, S., Fraysse, B., & Deguine, O., & Barone, P. (2010). Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation. Cerebral Cortex, 20(5), 1217–1222. https://doi.org/10.1093/cercor/bhp183

  65. Sun, Y., Liu, X., Li, B., Sava-Segal, C., Wang, A., & Zhang, M. (2020). Effects of repetition suppression on sound induced flash illusion with aging. Frontiers in Psychology, 11, 216. https://doi.org/10.3389/fpsyg.2020.00216

    Article  PubMed  PubMed Central  Google Scholar 

  66. Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400–410. https://doi.org/10.1016/j.tics.2010.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  67. van Erp, J. B., Philippi, T. G., & Werkhoven, P. (2013). Observers can reliably identify illusory flashes in the illusory flash paradigm. Experimental Brain Research, 226(1), 73–79. https://doi.org/10.1007/s00221-013-3413-8

    Article  PubMed  Google Scholar 

  68. Vroomen, J., & Stekelenburg, J. J. (2010). Visual anticipatory information modulates multisensory interactions of artificial audiovisual stimuli. Journal of Cognitive Neuroscience, 22(7), 1583–1596. https://doi.org/10.1162/jocn.2009.21308

    Article  PubMed  Google Scholar 

  69. Wang, A., Sang, H., He, J., Sava-Segal, C., Tang, X., & Zhang, M. (2019). Effects of cognitive expectation on sound-induced flash illusion. Perception, 48(12), 1214–1234. https://doi.org/10.1177/0301006619885796

    Article  PubMed  Google Scholar 

  70. Wu, D., Zhang, P., Li, C., Liu, N., Jia, W., Chen, G., Ren, W., Sun, Y., & Xiao, W. (2020). Perceptual learning at higher trained cutoff spatial frequencies induces larger visual improvements. Frontiers in Psychology, 11, 265. https://doi.org/10.3389/fpsyg.2020.00265

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yu, W., Wang, A. J., & Zhang, M. (2017). Effect of selective and divided attentions on auditory dominance in multisensory integration. Acta Psychologica Sinica, 49(2), 164–173. https://doi.org/10.3724/SP.J.1041.2017.00164

    Article  Google Scholar 

  72. Zhang, P., Zhao, Y., Dosher, B. A., & Lu, Z. L. (2019). Assessing the detailed time course of perceptual sensitivity change in perceptual learning. Journal of Vision, 19(5), 9–9. https://doi.org/10.1167/19.5.9

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhou, Y., Huang, C., Xu, P., Tao, L., Qiu, Z., Li, X., & Lu, Z. L. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research, 46(5), 739–750. https://doi.org/10.1016/j.visres.2005.07.031

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31700939 and 31871092). A.W. was also supported by the Natural Science Foundation of Jiangsu Province (BK20170333) and MOE Project of Humanities and Social Sciences (17YJC190024).

Author information

Affiliations

Authors

Contributions

A.W. and M.Z. designed the research. J.H. and K.L. performed the research. J.H. and E.W.

analyzed the data. J.H. and A.W. wrote the manuscript text. A.W. and M.Z. reviewed the manuscript.

Corresponding authors

Correspondence to Aijun Wang or Ming Zhang.

Ethics declarations

Competing Interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 102 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, E., Lu, K. et al. Long-term training reduces the responses to the sound-induced flash illusion. Atten Percept Psychophys (2021). https://doi.org/10.3758/s13414-021-02363-5

Download citation

Keywords

  • Sound-induced flash illusion
  • Perceptual sensitivity
  • Long-term training
  • Multisensory integration