Skip to main content

Shifting expectations: Lapses in spatial attention are driven by anticipatory attentional shifts

Abstract

Attention is dynamic, constantly shifting between different locations – sometimes imperfectly. How do goal-driven expectations impact dynamic spatial attention? A previous study (Dowd & Golomb, Psychological Science, 30(3), 343–361, 2019) explored object-feature binding when covert attention needed to be either maintained at a single location or shifted from one location to another. In addition to revealing feature-binding errors during dynamic shifts of attention, this study unexpectedly found that participants sometimes made correlated errors on trials when they did not have to shift attention, mistakenly reporting the features and location of an object at a different location. The authors posited that these errors represent “spatial lapses” attention, which are perhaps driven by the implicit sampling of other locations in anticipation of having to shift attention. To investigate whether these spatial lapses are indeed anticipatory, we conducted a series of four experiments. We first replicated in Psychological Science, 30(3), the original finding of spatial lapses, and then showed that these spatial lapses were not observed in contexts where participants are not expecting to have to shift attention. We then tested contexts where the direction of attentional shifts was spatially predictable, and found that participants lapse preferentially to more likely shift locations. Finally, we found that spatial lapses do not seem to be driven by explicit knowledge of likely shift locations. Combined, these results suggest that spatial lapses of attention are induced by the implicit anticipation of making an attentional shift, providing further insight into the interplay between implicit expectations, dynamic spatial attention, and visual perception.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adam, K. C., & Vogel, E. K. (2017). Confident failures: Lapses of working memory reveal a metacognitive blind spot. Attention, Perception, & Psychophysics, 79(5), 1506-1523.

    Article  Google Scholar 

  2. Alvarez, G. A., & Cavanagh, P. (2005). Independent Resources for Attentional Tracking in the Left and Right Visual Hemifields. Psychological Science, 16(8), 637–643. https://doi.org/10.1111/j.1467-9280.2005.01587.x

    Article  PubMed  Google Scholar 

  3. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7–7. https://doi.org/10.1167/9.10.7

    Article  PubMed  Google Scholar 

  4. Bays, P. M., Wu, E. Y., & Husain, M. (2011). Storage and binding of object features in visual working memory. Neuropsychologia, 49(6), 1622-1631

    Article  Google Scholar 

  5. Brainard, D. H. (1997) The Psychophysics Toolbox, Spatial Vision 10:433-436.

    Article  Google Scholar 

  6. Center, O. S. (1987). Ohio Supercomputer Center. http://osc.edu/ark:/19495/f5s1ph73

  7. Cheyne, J. A., Carriere, J. S., & Smilek, D. (2006). Absent-mindedness: Lapses of conscious awareness and everyday cognitive failures. Consciousness and cognition, 15(3), 578-592.

    Article  Google Scholar 

  8. deBettencourt, M. T., Norman, K. A., & Turk-Browne, N. B. (2018). Forgetting from lapses of sustained attention. Psychonomic Bulletin & Review, 25(2), 605–611. https://doi.org/10.3758/s13423-017-1309-5

    Article  Google Scholar 

  9. deBettencourt, M. T., Keene, P. A., Awh, E., & Vogel, E. K. (2019). Real-time triggering reveals concurrent lapses of attention and working memory. Nature Human Behaviour, 3(8), 808–816. https://doi.org/10.1038/s41562-019-0606-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Doherty, J. R., Rao, A., Mesulam, M.M., & Nobre, A.C. (2005). Synergistic Effect of Combined Temporal and Spatial Expectations on Visual Attention. Journal of Neuroscience, 25(36), 8259–8266. https://doi.org/10.1523/JNEUROSCI.1821-05.2005

    Article  PubMed  Google Scholar 

  11. Dowd, E. W., & Golomb, J. D. (2019). Object-Feature Binding Survives Dynamic Shifts of Spatial Attention. Psychological Science, 30(3), 343–361. https://doi.org/10.1177/0956797618818481

    Article  PubMed  PubMed Central  Google Scholar 

  12. Emrich, S. M., & Ferber, S. (2012). Competition increases binding errors in visual working memory. Journal of Vision, 12(4), 12–12. https://doi.org/10.1167/12.4.12

    Article  PubMed  Google Scholar 

  13. Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the Zone or Zoning Out? Tracking Behavioral and Neural Fluctuations During Sustained Attention. Cerebral Cortex, 23(11), 2712–2723. https://doi.org/10.1093/cercor/bhs261

    Article  PubMed  Google Scholar 

  14. Fiebelkorn, I. C., & Kastner, S. (2019). A Rhythmic Theory of Attention. Trends in Cognitive Sciences, 23(2), 87–101. https://doi.org/10.1016/j.tics.2018.11.009

    Article  PubMed  Google Scholar 

  15. Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic Sampling within and between Objects despite Sustained Attention at a Cued Location. Current Biology, 23(24), 2553–2558. https://doi.org/10.1016/j.cub.2013.10.063

    Article  PubMed  Google Scholar 

  16. Gaillard, C., Hassen, S. B. H., Di Bello, F., Bihan-Poudec, Y., VanRullen, R., & Hamed, S. B. (2020). Prefrontal attentional saccades explore space rhythmically. Nature Communications, 11(1), 1-13.

    Article  Google Scholar 

  17. Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7), 1252–1268. https://doi.org/10.3758/BF03193557

    Article  Google Scholar 

  18. Golomb, J. D., L’Heureux, Z. E., & Kanwisher, N. (2014). Feature-Binding Errors After Eye Movements and Shifts of Attention. Psychological Science, 25(5), 1067–1078. https://doi.org/10.1177/0956797614522068

    Article  PubMed  Google Scholar 

  19. JASP, Team. (2019). JASP (Version 0.11.1)[Computer Software]. https://jasp-stats.org/.

  20. Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 285–297. https://doi.org/10.1037/a0028022

    Article  PubMed  Google Scholar 

  21. Jiang, Y. V., Won, B.-Y., & Swallow, K. M. (2014). First saccadic eye movement reveals persistent attentional guidance by implicit learning. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1161–1173. https://doi.org/10.1037/a0035961

    Article  PubMed  Google Scholar 

  22. John K., Kruschke (2011) Bayesian Assessment of Null Values Via Parameter Estimation and Model Comparison. Perspectives on Psychological Science 6(3) 299-312 10.1177/1745691611406925

  23. Kiyonaga, A., Scimeca, J. M., Bliss, D. P., & Whitney, D. (2017). Serial Dependence across Perception, Attention, and Memory. Trends in Cognitive Sciences, 21(7), 493–497. https://doi.org/10.1016/j.tics.2017.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kleiner M, Brainard D, Pelli D, 2007. “What’s new in Psychtoolbox-3?” Perception 36 ECVP Abstract Supplement.

  25. Landau, A. N., & Fries, P. (2012). Attention Samples Stimuli Rhythmically. Current Biology, 22(11), 1000–1004. https://doi.org/10.1016/j.cub.2012.03.054

    Article  PubMed  Google Scholar 

  26. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58(7), 977–991. https://doi.org/10.3758/BF03206826

    Article  Google Scholar 

  27. Posner, M., & Cohen, Y. (1984). Components of Visual Orienting. Attention and Performance X: Control of Language Processes, 32, 531–556.

    Google Scholar 

  28. Re, D., Inbar, M., Richter, C. G., & Landau, A. N. (2019). Feature-based attention samples stimuli rhythmically. Current Biology, 29(4), 693-699.e4. https://doi.org/10.1016/j.cub.2019.01.010

    Article  PubMed  Google Scholar 

  29. Reason, J. (1984). Lapses of attention in everyday life. In R. Parasuraman & D. R. Davies (Eds.),Varieties of attention (pp. 515–549). Academic Press.

    Google Scholar 

  30. Roca, J., Lupiáñez, J., López-Ramón, M. F., & Castro, C. (2013). Are drivers’ attentional lapses associated with the functioning of the neurocognitive attentional networks and with cognitive failure in everyday life?. Transportation Research Part F: Traffic Psychology and Behaviour, 17, 98-113

    Article  Google Scholar 

  31. Rohenkohl, G., Gould, I. C., Pessoa, J., & Nobre, A. C. (2014). Combining spatial and temporal expectations to improve visual perception. Journal of Vision, 14(4), 8–8. https://doi.org/10.1167/14.4.8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosenberg, Monica D., Finn, E. S., Constable, R. T., & Chun, M. M. (2015). Predicting moment-to-moment attentional state. NeuroImage, 114, 249–256. https://doi.org/10.1016/j.neuroimage.2015.03.032

    Article  PubMed  Google Scholar 

  33. Rosenberg, M.D., Finn, E. S., Scheinost, D., Constable, R. T., & Chun, M. M. (2017). Characterizing Attention with Predictive Network Models. Trends in Cognitive Sciences, 21(4), 290–302. https://doi.org/10.1016/j.tics.2017.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shalgi, S., O’Connell, R. G., Deouell, L. Y., & Robertson, I. H. (2007). Absent minded but accurate: Delaying responses increases accuracy but decreases error awareness. Experimental Brain Research, 182(1), 119–124. https://doi.org/10.1007/s00221-007-1054-5

    Article  PubMed  Google Scholar 

  35. Shioiri, S., Honjyo, H., Kashiwase, Y., Matsumiya, K., & Kuriki, I. (2016). Visual attention spreads broadly but selects information locally. Scientific Reports, 6(1), 35513. https://doi.org/10.1038/srep35513

    Article  PubMed  PubMed Central  Google Scholar 

  36. Smallwood, J., Davies, J. B., Heim, D., Finnigan, F., Sudberry, M., O'Connor, R., & Obonsawin, M. (2004). Subjective experience and the attentional lapse: Task engagement and disengagement during sustained attention. Consciousness and Cognition, 13(4), 657-690.

    Article  Google Scholar 

  37. Steinman, R. M., Haddad, G. M., Skavenski, A. A., & Wyman, D. (1973). Miniature eye movement. Science, 181(4102), 810–819.

    Article  Google Scholar 

  38. Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of Vision, 13(10):9, 1–8. https://doi.org/10.1167/13.10.9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thut, G., Schyns, P. G., & Gross, J. (2011). Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00170

  40. Unsworth, N., Redick, T. S., Lakey, C. E., & Young, D. L. (2010). Lapses in sustained attention and their relation to executive control and fluid abilities: An individual differences investigation. Intelligence, 38(1), 111–122. https://doi.org/10.1016/j.intell.2009.08.002

    Article  Google Scholar 

  41. Van den Driessche, C., Bastian, M., Peyre, H., Stordeur, C., Acquaviva, É., Bahadori, S., Delorme, R., & Sackur, J. (2017). Attentional Lapses in Attention-Deficit/Hyperactivity Disorder: Blank Rather Than Wandering Thoughts. Psychological Science, 28(10), 1375–1386. https://doi.org/10.1177/0956797617708234

    Article  PubMed  Google Scholar 

  42. VanRullen, R. (2018). Attention Cycles. Neuron, 99(4), 632–634. https://doi.org/10.1016/j.neuron.2018.08.006

    Article  PubMed  Google Scholar 

  43. VanRullen, R., Carlson, T., & Cavanagh, P. (2007). The blinking spotlight of attention. Proceedings of the National Academy of Sciences, 104(49), 19204–19209. https://doi.org/10.1073/pnas.0707316104

    Article  Google Scholar 

  44. VanRullen, R. (2016). Perceptual cycles. Trends in cognitive sciences, 20(10), 723-735.

  45. Wang, Z., & Klein, R. M. (2010). Searching for inhibition of return in visual search: A review. Vision Research, 50(2), 220–228. https://doi.org/10.1016/j.visres.2009.11.013

    Article  PubMed  Google Scholar 

  46. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. https://doi.org/10.1038/nature06860

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Veronica Olaker and Maurryce Starks for their assistance with data collection.

Funding

NIH R01-EY025648 (JG), F32-EY028011(EWD); NSF 1848939 (JG).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christopher M. Jones or Julie D. Golomb.

Additional information

Open Practices Statement

The current study was designed to closely follow methods reported in Dowd and Golomb (2019). Although Experiments 1–3 were not formally preregistered, the experimental design, participant inclusion criteria, and analyses follow those described in the previous paper as closely as possible, except where noted. These first three experiments were conducted in parallel, with participants randomly assigned among them. Experiment 4 was conducted after analyzing the first three experiments, and was pre-registered at https://osf.io/mxq9j. Materials are available on the Open Science Framework (OSF).

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jones, C.M., Dowd, E.W. & Golomb, J.D. Shifting expectations: Lapses in spatial attention are driven by anticipatory attentional shifts. Atten Percept Psychophys 83, 2822–2842 (2021). https://doi.org/10.3758/s13414-021-02354-6

Download citation

Keywords

  • statistical learning
  • spatial probability
  • rhythmic sampling