Skip to main content

Perceptual and response factors in the gradual onset continuous performance tasks

Abstract

Using a novel gradual onset continuous performance task (gradCPT), recent research has uncovered a brain network of the sustained attention ability, demonstrating marked individual differences. Yet much about the cognitive processes that support performance on the gradCPT remains unknown. Here, we tested the importance of response inhibition and perceptual discrimination in the gradCPT. Participants monitored a continuous stream of natural scenes from two categories—cities and mountains—with a 9:1 ratio. In separate task blocks, they responded either to the frequent or the rare, yielding a response rate of either 90% or 10%. Performance was much worse, and declined more significantly over time, when the required response rate was higher. To test the role of stimulus onset, separate task blocks presented the scenes either gradually, with adjacent scenes blending into each other (gradCPT), or abruptly, with a single scene visible at a time (abruptCPT). Despite its increased complexity, the gradCPT yielded better performance than the abruptCPT, contradicting the perceptual complexity hypothesis and suggesting a detrimental role of the automaticity of responses to rhythmic stimuli in sustained attention. Further bolstering the role of response inhibition in the gradCPT, participants with superior inhibitory function, as assessed by the “stop-signal” task, did better on the gradCPT. These findings show that response inhibition contributes to the ability to sustain attention, especially in tasks that require frequent and repetitive responses as in assembly-line jobs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig 2
Fig. 3

Data availability

Aggregated data showing each participant’s CPT performance (sensitivity (A'), response bias (B''), two types of error rates (commission error and omission error), RT in correct trials), as well as their stop-signal reaction time and Go/No-Go accuracy, can be found on OSF website: https://osf.io/p5c6v/.

Notes

  1. 1.

    We thank Dr. Michael Esterman for this suggestion.

  2. 2.

    We thank an anonymous reviewer for raising this interesting possibility.

References

  1. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65. https://doi.org/10.1037/0033-2909.121.1.65

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357

    Article  Google Scholar 

  3. Buchsbaum, B. R., Greer, S., Chang, W.-L., & Berman, K. F. (2005). Meta-analysis of neuroimaging studies of the Wisconsin Card-Sorting task and component processes. Human Brain Mapping, 25, 35–45. https://doi.org/10.1002/hbm.20128

    Article  PubMed  PubMed Central  Google Scholar 

  4. Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal–striatal model. Trends in Cognitive Sciences, 16(1), 17–26. https://doi.org/10.1016/j.tics.2011.11.007

    Article  PubMed  Google Scholar 

  5. Esterman, M., Liu, G., Okabe, H., Reagan, A., Thai, M., & DeGutis, J. (2015). Frontal eye field involvement in sustaining visual attention: Evidence from transcranial magnetic stimulation. NeuroImage, 111, 542–548. https://doi.org/10.1016/j.neuroimage.2015.01.044

    Article  PubMed  Google Scholar 

  6. Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23(11), 2712–2723. https://doi.org/10.1093/cercor/bhs261

    Article  PubMed  Google Scholar 

  7. Esterman, M., Reagan, A., Liu, G., Turner, C., & DeGutis, J. (2014a). Reward reveals dissociable aspects of sustained attention. Journal of Experimental Psychology: General, 143(6), 2287–2295. https://doi.org/10.1037/xge0000019

    Article  Google Scholar 

  8. Esterman, M., Rosenberg, M. D., & Noonan, S. K. (2014b). Intrinsic fluctuations in sustained attention and distractor processing. Journal of Neuroscience, 34(5), 1724–1730. https://doi.org/10.1523/JNEUROSCI.2658-13.2014

    Article  PubMed  Google Scholar 

  9. Esterman, M., Grosso, M., Liu, G., Mitko, A., Morris, R., & DeGutis, J. (2016). Anticipation of monetary reward can attenuate the vigilance decrement. PLOS ONE, 11(7), Article e0159741. https://doi.org/10.1371/journal.pone.0159741

  10. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396(1), 70. https://doi.org/10.1111/nyas.13318

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M., Russo, K., & Esterman, M. (2015). Sustained attention across the life span in a sample of 10,000: Dissociating ability and strategy. Psychological Science, 26(9), 1497–1510. https://doi.org/10.1177/0956797615594896

    Article  PubMed  Google Scholar 

  13. Fortenbaugh, F. C., Rothlein, D., McGlinchey, R., DeGutis, J., & Esterman, M. (2018). Tracking behavioral and neural fluctuations during sustained attention: A robust replication and extension. NeuroImage, 171, 148–164. https://doi.org/10.1016/j.neuroimage.2018.01.002

    Article  PubMed  Google Scholar 

  14. Friedman-Hill, S. R., Wagman, M. R., Gex, S. E., Pine, D. S., Leibenluft, E., & Ungerleider, L. G. (2010). What does distractibility in ADHD reveal about mechanisms for top-down attentional control? Cognition, 115(1), 93–103. https://doi.org/10.1016/j.cognition.2009.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: Computing formulas. Psychological Bulletin, 75, 424–429. https://doi.org/10.1037/h0031246

    Article  Google Scholar 

  16. Hawkins, G. E., Mittner, M., Forstmann, B. U., & Heathcote, A. (2019). Modeling distracted performance. Cognitive Psychology, 112, 48–80. https://doi.org/10.1016/j.cogpsych.2019.05.002

    Article  PubMed  Google Scholar 

  17. Jun, J., Remington, R. W., Koutstaal, W., & Jiang, Y. V. (2019). Characteristics of sustaining attention in a gradual-onset continuous performance task. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 386–401. https://doi.org/10.1037/xhp0000604

    Article  PubMed  Google Scholar 

  18. Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661–679. https://doi.org/10.1017/S0140525X12003196

    Article  Google Scholar 

  19. Levy, F., Pipingas, A., Harris, E. V., Farrow, M., & Silberstein, R. B. (2018). Continuous performance task in ADHD: Is reaction time variability a key measure? Neuropsychiatric Disease and Treatment, 14, 781–786. https://doi.org/10.2147/NDT.S158308

    Article  PubMed  PubMed Central  Google Scholar 

  20. Littman, R., & Takács, Á. (2017). Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms. PLOS ONE, 12(10), Article e0186774. https://doi.org/10.1371/journal.pone.0186774

  21. Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295–327. https://doi.org/10.1037/0033-295X.91.3.295

    Article  Google Scholar 

  22. Manly, T., Robertson, I. H., Galloway, M., & Hawkins, K. (1999). The absent mind: Further investigations of sustained attention to response. Neuropsychologia, 37(6), 661–670. https://doi.org/10.1016/S0028-3932(98)00127-4

    Article  PubMed  Google Scholar 

  23. Parasuraman, R., de Visser, E., Clarke, E., McGarry, W. R., Hussey, E., Shaw, T., & Thompson, J. C. (2009). Detecting threat-related intentional actions of others: Effects of image quality, response mode, and target cuing on vigilance. Journal of Experimental Psychology: Applied, 15(4), 275–290. https://doi.org/10.1037/a0017132

    Article  PubMed  Google Scholar 

  24. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. https://doi.org/10.1163/156856897X00366

    Article  Google Scholar 

  25. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758. https://doi.org/10.1016/S0028-3932(97)00015-8

    Article  PubMed  Google Scholar 

  26. Rosenberg, M. D., Finn, E. S., Scheinost, D., Constable, R. T., & Chun, M. M. (2017). Characterizing attention with predictive network models. Trends in Cognitive Sciences, 21(4), 290–302. https://doi.org/10.1016/j.tics.2017.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable, R. T., & Chun, M. M. (2016a). A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience, 19(1), 165–171. https://doi.org/10.1038/nn.4179

    Article  PubMed  Google Scholar 

  28. Rosenberg, M. D., Zhang, S., Hsu, W.-T., Scheinost, D., Finn, E. S., Shen, X., Constable, R. T., Li, C.-S. R., & Chun, M. M. (2016b). Methylphenidate modulates functional network connectivity to enhance attention. Journal of Neuroscience, 36(37), 9547–9557. https://doi.org/10.1523/JNEUROSCI.1746-16.2016

    Article  PubMed  Google Scholar 

  29. Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome E. D., Jr., & Beck, L. H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20(5), 343–350. https://doi.org/10.1037/h0043220

    Article  PubMed  Google Scholar 

  30. Rothlein, D., DeGutis, J., Germine, L., Wilmer, J., McGlinchey, R., & Esterman, M. (2018). Sensitivity to stimulus similarity is associated with greater sustained attention ability. Attention, Perception, & Psychophysics, 80(6), 1390–1408. https://doi.org/10.3758/s13414-018-1504-0

    Article  Google Scholar 

  31. Schachar, R., Logan, G., Wachsmuth, R., & Chajezyk, D. (1988). Attaining and maintaining preparation: A comparison of attention in hyperactive, normal, and disturbed control group. Journal of Abnormal Child Psychology, 16(4), 361–378.

    Article  Google Scholar 

  32. Shalev, N., Humphreys, G., & Demeyere, N. (2018). Manipulating perceptual parameters in a continuous performance task. Behavior Research Methods, 50(1), 380–391. https://doi.org/10.3758/s13428-017-0877-7

    Article  PubMed  Google Scholar 

  33. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149. https://doi.org/10.3758/BF03207704

    Article  Google Scholar 

  34. Stevenson, H., Russell, P. N., & Helton, W. S. (2011). Search asymmetry, sustained attention, and response inhibition. Brain and Cognition, 77(2), 215–222. https://doi.org/10.1016/j.bandc.2011.08.007

    Article  PubMed  Google Scholar 

  35. Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on Psychological Science, 10(1), 82–96. https://doi.org/10.1177/1745691614556681

    Article  PubMed  Google Scholar 

  36. Verbruggen, F., Aron, A. R., Band, G. P., Beste, C., Bissett, P. G., Brockett, A. T., Brown, J. W., Chamberlain, S. R., Chambers, C. D., Colonius, H., Colzato, L. S., Corneil, B. D., Coxon, J. P., Dupuis, A., Eagle, D. M., Garavan, H., Greenhouse, I., Heathcote, A., Huster, R. J., . . . Boehler, C. N. (2019). A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. Elife, 8, Article e46323. https://doi.org/10.7554/eLife.46323

  37. Verbruggen, F., & Logan, G. D. (2008a). Automatic and controlled response inhibition: Associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649–672. https://doi.org/10.1037/a0013170

    Article  Google Scholar 

  38. Verbruggen, F., & Logan, G. D. (2008b). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418–424. https://doi.org/10.1016/j.tics.2008.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  39. Verbruggen, F., & Logan, G. D. (2009). Models of response inhibition in the stop-signal and stop-change paradigms. Neuroscience & Biobehavioral Reviews, 33(5), 647–661. https://doi.org/10.1016/j.neubiorev.2008.08.014

    Article  Google Scholar 

  40. Verbruggen, F., Logan, G. D., & Stevens, M. A. (2008). STOP-IT: Windows executable software for the stop-signal paradigm. Behavior Research Methods, 40, 479–483. https://doi.org/10.3758/BRM.40.2.479

    Article  PubMed  Google Scholar 

  41. Warm, J. S., Dember, W. N., & Hancock, P. A. (1996). Vigilance and workload in automated systems. In R. Parasuraman & M. Mouloua (Eds.), Automation and human performance: Theory and applications. Human factors in transportation (pp. 183–200). Erlbaum.

    Google Scholar 

  42. Wilson, K. M., Head, J., de Joux, N. R., Finkbeiner, K. M., & Helton, W. S. (2015). Friendly fire and the sustained attention to response task. Human Factors, 57(7), 1219–1234. https://doi.org/10.1177/0018720815605703

    Article  PubMed  Google Scholar 

  43. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623–638. https://doi.org/10.1037/0096-3445.136.4.623

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Gloria J. Randahl graduate fellowship. We thank Roger Remington, Wilma Koutstaal, Caitlin Sisk, Yi Ni Toh, and Annie Chen for comments and suggestions

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jihyang Jun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance statement

This study shows that people differ markedly in their ability to sustain attention on a task. This difference is particularly striking when the task requires people to make frequent responses, only to withhold responses occasionally. Those with superior inhibitory function, as assessed in a “stop-signal” task, are more capable of withholding responses in the continuous performance task. Paradoxically, making the images harder to see enhances rather than impairs performance. The finding shows that response inhibition is a significant component of sustained attention tasks, especially tasks that require frequent and repetitive responses, as in assembly-line jobs.

Appendices

Appendix 1: Defective cumulative distribution function in response time

Fig. 4
figure4

Defective cumulative distribution function (CDF) for RT in the group mean across 43 participants. The filled triangle dots represent the gradual-onset CPT condition with a 90% task-required response rate (▲ for Go RTs; ▲ for No-Go RTs). The open triangle dots represent the abrupt-onset CPT condition with a 90% task-required response rate (△for Go RTs; △ for No-Go RTs). Each triangle point represents the 10th, 30th, 50th, 70th, and 90th percentile of the RT distributions on the x-axis and its corresponding cumulative probability of responses on the y-axis

Appendix 2: Speed–accuracy relationship

Fig. 5
figure5

Scatterplots with trend lines illustrating the relationship between mean RT on correct trials and overall A'. Each dot depicts data from one participant. a The gradCPT with 90% task-required response rate. b The abruptCPT with 90% task-required response rate. C The gradCPT with 10% task-required response rate. d The abruptCPT with 10% task-required response rate. Speed–accuracy trade-off was not observed in this study, likely due to the intermixing of blocks with different task-required response rates

Appendix 3: Response bias (B”) and other CPT measures. Standard error of the mean is displayed in parentheses

Table 1 Response bias (B”)
Table 2 Commission errors, or P(“Go response” | “No-go stimulus”)
Table 3 Omission errors, or P(“No-go response” | “Go stimulus”)
Table 4 RT on correct trials (millisecond)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jun, J., Lee, V.G. Perceptual and response factors in the gradual onset continuous performance tasks. Atten Percept Psychophys 83, 3008–3023 (2021). https://doi.org/10.3758/s13414-021-02353-7

Download citation

Keywords

  • Sustained attention
  • Response inhibition
  • Vigilance decrement
  • Continuous performance task
  • Stop-signal task
  • Go/no-go task