Skip to main content

Domain-specific and domain-general contributions to reading musical notation

Abstract

Musical practice may benefit not only domain-specific abilities, such as pitch discrimination and music performance, but also domain-general abilities, like executive functioning and memory. Behavioral and neural changes in visual processing have been associated with music-reading experience. However, it is still unclear whether there is a domain-specific visual ability to process musical notation. This study investigates the specificity of the visual skills relevant to simple decisions about musical notation. Ninety-six participants varying in music-reading experience answered a short survey to quantify experience with musical notation and completed a test battery that assessed musical notation reading fluency and accuracy at the level of individual note or note sequence. To characterize how this ability may relate to domain-general abilities, we also estimated general intelligence (as measured with the Raven’s Progressive Matrices) and general object-recognition ability (as measure by a recently proposed construct o). We obtained reliable measurements on our various tasks and found evidence for a domain-specific ability of the perception of musical notation. This music-reading ability and domain-general abilities were found to contribute to performance on specific tasks differently, depending on the level of experience reading music.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Barakat, B., Seitz, A. R., & Shams, L. (2015). Visual rhythm perception improves through auditory but not visual training. Current Biology, 25(2), R60–R61. https://doi.org/10.1016/j.cub.2014.12.011

    Article  PubMed  Google Scholar 

  2. Bean, K. L. (1938). An experimental approach to the reading of music. Psychological Monographs, 50(6), 1–80. https://doi.org/10.1037/h0093540

    Article  Google Scholar 

  3. Bialystok, E., & DePape, A.-M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565–574. https://doi.org/10.1037/a0012735

    Article  PubMed  Google Scholar 

  4. Bratzke, D., Seifried, T., & Ulrich, R. (2012). Perceptual learning in temporal discrimination: Asymmetric cross-modal transfer from audition to vision. Experimental Brain Research, 221(2), 205–210. https://doi.org/10.1007/s00221-012-3162-0

    Article  PubMed  Google Scholar 

  5. Brochard, R., Dufour, A., & Després, O. (2004). Effect of musical expertise on visuospatial abilities: Evidence from reaction times and mental imagery. Brain and Cognition, 54(2), 103–109. https://doi.org/10.1016/S0278-2626(03)00264-1

    Article  PubMed  Google Scholar 

  6. Brown, W. (1910). Some experimental results in the correlation of mental abilities. British Journal of Psychology, 3, 296–322.

    Google Scholar 

  7. Bugos, J. A. (2019). The effects of bimanual coordination in music interventions on executive functions in aging adults. Frontiers in Integrative Neuroscience, 13, 68–68. https://doi.org/10.3389/fnint.2019.00068

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burgoyne, A. P., Harris, L. J., & Hambrick, D. Z. (2019). Predicting piano skill acquisition in beginners: The role of general intelligence, music aptitude, and mindset. Intelligence, 76, Article 101383. https://doi.org/10.1016/j.intell.2019.101383

  9. Butzlaff, R. (2000). Can music be used to teach reading? The Journal of Aesthetic Education, 34(3/4), 167–178. https://doi.org/10.2307/3333642

    Article  Google Scholar 

  10. Chang, T.-Y., & Gauthier, I. (2020). Distractor familiarity reveals the importance of configural information in musical notation. Attention, Perception, & Psychophysics, 82(3), 1304–1317. https://doi.org/10.3758/s13414-019-01826-0

    Article  Google Scholar 

  11. Chua, K.-W., & Gauthier, I. (2020). Domain-specific experience determines individual differences in holistic processing. Journal of Experimental Psychology General, 149(1), 31–41. https://doi.org/10.1037/xge0000628

    Article  PubMed  Google Scholar 

  12. Clayton, K. K., Swaminathan, J., Yazdanbakhsh, A., Zuk, J., Patel, A. D., & Kidd, G. (2016). Executive function, visual attention and the cocktail party problem in musicians and non-musicians. PLOS ONE, 11(7), Article e015763 https://doi.org/10.1371/journal.pone.0157638

  13. Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281–302. https://doi.org/10.1037/h0040957

    Article  PubMed  Google Scholar 

  14. Curby, K. M., Glazek, K., & Gauthier, I. (2009). A visual short-term memory advantage for objects of expertise. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 94–107. https://doi.org/10.1037/0096-1523.35.1.94

    Article  PubMed  Google Scholar 

  15. Degé, F., Wehrum, S., Stark, R., & Schwarzer, G. (2011). The influence of two years of school music training in secondary school on visual and auditory memory. European Journal of Developmental Psychology, 8(5), 608–623. https://doi.org/10.1080/17405629.2011.590668

    Article  Google Scholar 

  16. Habibi, A., Damasio, A., Ilari, B., Sachs, M. E., & Damasio, H. (2018). Music training and child development: A review of recent findings from a longitudinal study. Annals of the New York Academy of Sciences, 1423(1), 73–81. https://doi.org/10.1111/nyas.13606

    Article  Google Scholar 

  17. Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11(11), 466–472. https://doi.org/10.1016/j.tics.2007.08.008

    Article  PubMed  Google Scholar 

  18. Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–161. https://doi.org/10.2307/1912352

    Article  Google Scholar 

  19. Jakobson, L. S., Lewycky, S. T., Kilgour, A. R., & Stoesz, B. M. (2008). Memory for verbal and visual material in highly trained musicians. Music Perception, 26(1), 41–55. https://doi.org/10.1525/MP.2008.26.1.41

    Article  Google Scholar 

  20. JASP Team. (2020). JASP (Version 0.14.1)[Computer software]. https://jasp-stats.org/

  21. Jeffreys, H. (1961). Theory of probability (3rd ed.). Clarendon.

    Google Scholar 

  22. Jones, G., & Macken, B. (2015). Questioning short-term memory and its measurement: Why digit span measures long-term associative learning. Cognition, 144, 1–13. https://doi.org/10.1016/j.cognition.2015.07.009

    Article  PubMed  Google Scholar 

  23. Law, L. N. C., & Zentner, M. (2012). Assessing musical abilities objectively: Construction and validation of the profile of music perception skills. PLOS ONE, 7(12), Article e52508. https://doi.org/10.1371/journal.pone.0052508

  24. Li, S. T. K., Chung, S. T. L., & Hsiao, J. H. (2019). Music-reading expertise modulates the visual span for English letters but not Chinese characters. Journal of Vision, 19(4). https://doi.org/10.1167/19.4.10

  25. MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40. https://doi.org/10.1037//1082-989X.7.1.19

    Article  PubMed  Google Scholar 

  26. Magne, C., Schön, D., & Besson, M. (2006). Musician children detect pitch violations in both music and language better than nonmusician children: Behavioral and electrophysiological approaches. Journal of Cognitive Neuroscience, 18(2), 199–211. https://doi.org/10.1162/jocn.2006.18.2.199

    Article  PubMed  Google Scholar 

  27. Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433. https://doi.org/10.1177/0956797611416999

    Article  PubMed  Google Scholar 

  28. Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cerebral Cortex, 19(3), 712–723. https://doi.org/10.1093/cercor/bhn120

    Article  PubMed  Google Scholar 

  29. Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: Implications for cognitive abilities and hearing speech in noise. PLOS ONE, 6(5), Article e18082. https://doi.org/10.1371/journal.pone.0018082

  30. Raven, J. (2000). The Raven’s Progressive Matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1–48. https://doi.org/10.1006/cogp.1999.0735

    Article  PubMed  Google Scholar 

  31. Richler, J. J., Tomarken, A. J., Sunday, M. A., Vickery, T. J., Ryan, K. F., Floyd, R. J., Sheinberg, D., Wong, A. C.-N., & Gauthier, I. (2019). Individual differences in object recognition. Psychological Review, 126(2), 226–251. https://doi.org/10.1037/rev0000129

    Article  PubMed  PubMed Central  Google Scholar 

  32. Richler, J. J., Wilmer, J. B., & Gauthier, I. (2017). General object recognition is specific: Evidence from novel and familiar objects. Cognition, 166, 42–55. https://doi.org/10.1016/j.cognition.2017.05.019

    Article  PubMed  Google Scholar 

  33. Roden, I., Könen, T., Bongard, S., Frankenberg, E., Friedrich, E. K., & Kreutz, G. (2014). Effects of music training on attention, processing speed and cognitive music abilities-findings from a longitudinal study. Applied Cognitive Psychology, 28, 545–557. https://doi.org/10.1002/acp.3034

    Article  Google Scholar 

  34. Rodrigues, A. C., Loureiro, M. A., & Caramelli, P. (2013). Long-term musical training may improve different forms of visual attention ability. Brain and Cognition, 82(3), 229–235. https://doi.org/10.1016/j.bandc.2013.04.009

    Article  PubMed  Google Scholar 

  35. Rodrigues, A. C., Loureiro, M., & Caramelli, P. (2014). Visual memory in musicians and non-musicians. Frontiers in Human Neuroscience, 8, 1–10. https://doi.org/10.3389/fnhum.2014.00424

    Article  Google Scholar 

  36. Salis, D. L. (1980). Laterality effects with visual perception of. Perception & Psychophysics, 28(4), 284–292. https://doi.org/10.3758/BF03204387

    Article  Google Scholar 

  37. Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511–514. https://doi.org/10.1111/j.0956-7976.2004.00711.x

    Article  PubMed  Google Scholar 

  38. Schellenberg, E. G. (2006). Long-term positive associations between music lessons and IQ. Journal of Educational Psychology, 98(2), 457–468. https://doi.org/10.1037/0022-0663.98.2.457

    Article  Google Scholar 

  39. Schellenberg, E. G. (2011a). Examining the association between music lessons and intelligence. The British Journal of Psychology, 102(3), 283–302. https://doi.org/10.1111/j.2044-8295.2010.02000.x

    Article  Google Scholar 

  40. Schellenberg, E. G. (2011b). Music lessons, emotional intelligence, and IQ. Music Perception, 29(2), 185–194. https://doi.org/10.1525/mp.2011.29.2.185

    Article  Google Scholar 

  41. Shen, Y., Lin, Y., Liu, S., Fang, L., & Liu, G. (2019). Sustained effect of music training on the enhancement of executive function in preschool children. Frontiers in Psychology, 10, 1910–1910. https://doi.org/10.3389/fpsyg.2019.01910

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sloboda, J. A. (1978). Perception of contour in music reading. Perception, 7(3), 323–331. https://doi.org/10.1068/p070323

    Article  PubMed  Google Scholar 

  43. Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 1904–1920, 3(3), 271–295. https://doi.org/10.1111/j.2044-8295.1910.tb00206.x

    Article  Google Scholar 

  44. Stewart, L., Walsh, V., & Frith, U. (2004). Reading music modifies spatial mapping in pianists. Perception & Psychophysics, 66(2), 183–195. https://doi.org/10.3758/BF03194871

    Article  Google Scholar 

  45. Strait, D. L., & Kraus, N. (2011). Playing music for a smarter ear: Cognitive, perceptual and neurobiological evidence. Music Perception, 29(2), 133–146. https://doi.org/10.1525/mp.2011.29.2.133

    Article  PubMed  PubMed Central  Google Scholar 

  46. Strait, D. L., Kraus, N., Parbery-Clark, A., & Ashley, R. (2010). Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research, 261(1), 22–29. https://doi.org/10.1016/j.heares.2009.12.021

    Article  PubMed  Google Scholar 

  47. Sunday, M. A., Donnelly, E., & Gauthier, I. (2018). Both fluid intelligence and visual object recognition ability relate to nodule detection in chest radiographs. Applied Cognitive Psychology, 32(6), 755–762. https://doi.org/10.1002/acp.3460

    Article  Google Scholar 

  48. Sunday, M. A., Tomarken, A., Cho, S.-J. & Gauthier, I. (2021). Novel and familiar object recognition rely on the same ability. Journal of Experimental Psychology: General (in press).

  49. Wang, M. W., & Stanley, J. C. (1970). Differential weighting: A review of methods and empirical studies. Review of Educational Research, 40(5), 663–705. https://doi.org/10.3102/00346543040005663

    Article  Google Scholar 

  50. Wong, A. C.-N, Ng, T. Y. K., Lui, K. F. H., Yip, K. H. M., & Wong, Y. K. (2019). Visual training with musical notes changes late but not early electrophysiological responses in the visual cortex. Journal of Vision, 19(7), 8. https://doi.org/10.1167/19.7.8

    Article  PubMed  Google Scholar 

  51. Wong, A. C.-N, Palmeri, T. J., & Gauthier, I. (2009). Conditions for face-like expertise with objects: Becoming a Ziggerin expert – but which type? Psychological Science, 20(9), 1108–1117. https://doi.org/10.1111/j.1467-9280.2009.02430.x

    Article  PubMed  Google Scholar 

  52. Wong, Y. K., & Gauthier, I. (2010a). A multimodal neural network recruited by expertise with musical notation. Journal of Cognitive Neuroscience, 22(4), 695–713. https://doi.org/10.1162/jocn.2009.21229

    Article  PubMed  Google Scholar 

  53. Wong, Y. K., & Gauthier, I. (2010b). Holistic processing of musical notation: Dissociating failures of selective attention in experts and novices. Cognitive, Affective, & Behavioral Neuroscience, 10(4), 541–551. https://doi.org/10.3758/CABN.10.4.541

    Article  Google Scholar 

  54. Wong, Y. K., & Gauthier, I. (2012). Music-reading expertise alters visual spatial resolution for musical notation. Psychonomic Bulletin & Review, 19(4), 594–600. https://doi.org/10.3758/s13423-012-0242-x

    Article  Google Scholar 

  55. Wong, Y. K., Lui, K. F. H., & Wong, A. C. N. (2020). A reliable and valid tool for measuring visual recognition ability with musical notation. Behavior Research Methods. Advance online publication. https://doi.org/10.3758/s13428-020-01461-w

  56. Wong, Y. K., Peng, C., Fratus, K. N., Woodman, G. F., & Gauthier, I. (2014). Perceptual expertise and top-down expectation of musical notation engages the primary visual cortex. Journal of Cognitive Neuroscience, 26(8), 1629–1643. https://doi.org/10.1162/jocn_a_00616

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wong, Y. K., & Wong, A. C.-N. (2018). The role of line junctions in object recognition: The case of reading musical notation. Psychonomic Bulletin & Review, 25(4), 1373–1380. https://doi.org/10.3758/s13423-018-1483-0

    Article  Google Scholar 

  58. Xu, Z., Adam, K. C. S., Adam, K. C. S., Fang, X., Fang, X., Vogel, E. K., & Vogel, E. K. (2018). The reliability and stability of visual working memory capacity. Behavior Research Methods, 50(2), 576–588. https://doi.org/10.3758/s13428-017-0886-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ting-Yun Chang.

Additional information

Open practices statement

The study was not preregistered. The data sets are available online (https://doi.org/10.6084/m9.figshare.13643732.v1), and the materials are available upon request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was supported by a Music, Mind, and Society at Vanderbilt University Booster Grant and the Government Scholarship to Study Abroad from Taiwan Ministry of Education, and by NSF award 1640681. We would like to thank Jackie Floyd and Melanie Kacin for their help in collecting the data.

The data are publicly available online: https://doi.org/10.6084/m9.figshare.13643732.v1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, TY., Gauthier, I. Domain-specific and domain-general contributions to reading musical notation. Atten Percept Psychophys 83, 2983–2994 (2021). https://doi.org/10.3758/s13414-021-02349-3

Download citation

Keywords

  • Individual differences
  • Visual expertise
  • Music
  • Object recognition