Skip to main content

Low prevalence match and mismatch detection in simultaneous face matching: Influence of face recognition ability and feature focus guidance

Abstract

Simultaneous face matching to verify identity is key to security and policing. However, matching is error-prone, particularly when target-item prevalence is low. Two experiments examined whether superior face recognition ability and the use of internal or external facial feature guidance scales would reduce low prevalence effects. In Experiment 1, super-recognisers (n = 317) significantly outperformed typical-ability controls (n = 452), while internal feature guidance enhanced accuracy across all prevalence conditions. However, an unexpected effect in controls revealed higher accuracy in low prevalence conditions, probably because no low-match or low-mismatch prevalence information was provided. In Experiment 2, top-end-of-typical range ability participants (n = 841) were informed of their low prevalence condition and demonstrated the expected low-prevalence effects. Findings and implications are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abudarham, N., & Yovel, G. (2016). Reverse engineering the face space: Discovering the critical features for face identification. Journal of Vision, 14, 563-563. https://doi.org/10.1167/14.10.563

    Article  Google Scholar 

  2. Armstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic and Physiological Optics, 34(5), 502–508. https://doi.org/10.1111/opo.12131

    Article  PubMed  Google Scholar 

  3. Bate, S., Bennetts, R., Murray, E., & Portch, E. (2020). Enhanced Matching of Children’s Faces in “Super-Recognisers” But Not High-Contact Controls. I-Perception, 11, 1-12. https://doi.org/10.1177/2041669520944420

  4. Bate, S., Frowd, C., Bennetts, R., Hasshim, N., Murray, E., Bobak, A. K., Wills, H., & Richards, S. (2018). Applied screening tests for the detection of superior face recognition. Cognitive Research: Principles and Implications, 3(1). https://doi.org/10.1186/s41235-018-0116-5

  5. Belanova, E., Davis, J. P., & Thompson, T. (2018). Cognitive and neural markers of super-recognisers’ face processing superiority and enhanced cross-age effect. Cortex, 108, 92-111. https://doi.org/10.1016/j.cortex.2018.07.008

    Article  PubMed  Google Scholar 

  6. Bindemann M & Sandford A (2011). Me, myself, and I: Different recognition rates for three photo-IDs of the same person. Perception: 40, 625–627. https://doi.org/10.1068/p7008

    Article  PubMed  Google Scholar 

  7. Bindemann, M., Avetisyan, M., & Blackwell, K. A. (2010). Finding needles in haystacks: Identity mismatch frequency and facial identity verification. Journal of Experimental Psychology: Applied, 16(4), 378-386. https://doi.org/10.1037/a0021893

    Article  PubMed  Google Scholar 

  8. Blanca, M.J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2017). Non-normal data: Is ANOVA still a valid option? Psicothema, 29(4):552-557. https://doi.org/10.7334/psicothema2016.383.

    Article  PubMed  Google Scholar 

  9. Bobak, A. K., Hancock, P. J., & Bate, S. (2016). Super-recognisers in action: Evidence from face-matching and face memory tasks. Applied Cognitive Psychology, 30(1), 81-91. https://doi.org/10.1002/acp.3170

    Article  PubMed  Google Scholar 

  10. Bobak, A. K., Pampoulov, P., & Bate, S. (2016). Detecting superior face recognition skills in a large sample of young British adults. Frontiers in Psychology, 7(1378), 1-11. doi:https://doi.org/10.3389/fpsyg.2016.01378

  11. Bruce, V., Henderson, Z., Greenwood, K., Hancock, P. J., Burton, A. M., & Miller, P. (1999). Verification of face identities from images captured on video. Journal of Experimental Psychology: Applied, 5(4), 339. ISSN 1076-898X

    Google Scholar 

  12. Burton, A. M. (2013). Why has research in face recognition progressed so slowly? The importance of variability. The Quarterly Journal of Experimental Psychology, 66(8), 1467-1485. https://doi.org/10.1080/17470218.2013.800125

    Article  Google Scholar 

  13. Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow face matching test. Behavior Research Methods, 42(1), 286-291. https://doi.org/10.3758/BRM.42.1.286

    Article  PubMed  Google Scholar 

  14. Burton, A. M., Wilson, S., Cowan, M., & Bruce, V. (1999). Face recognition in poor-quality video: Evidence from security surveillance. Psychological Science, 10(3), 243-248. https://www.jstor.org/stable/40063419

    Article  Google Scholar 

  15. Davis, J. P., & Valentine, T. (2009). CCTV on trial: Matching video images with the defendant in the dock. Applied Cognitive Psychology, 23(4), 482-505. https://doi.org/10.1002/acp.1490

    Article  Google Scholar 

  16. Davis, J. P., Bretfelean, D., Belanova, E., & Thompson, T. (2020). Super-recognisers: face recognition performance after variable delay intervals. Applied Cognitive Psychology, 34(6), 1350-1368. DOI:https://doi.org/10.1002/acp.3712

    Article  Google Scholar 

  17. Davis, J. P., Forrest, C., Treml, F., & Jansari, A. (2018). Identification from CCTV: Assessing police super-recogniser ability to spot faces in a crowd and susceptibility to change blindness. Applied Cognitive Psychology, 32(3), 337-353. https://doi.org/10.1002/acp.3405

    Article  Google Scholar 

  18. Davis, J. P., Lander, K., Evans, R., & Jansari, A. (2016). Investigating predictors of superior face recognition ability in police super-recognisers. Applied Cognitive Psychology, 30(6), 827-840. https://doi.org/10.1002/acp.3260

    Article  Google Scholar 

  19. Dowsett, A. J., & Burton, A. M. (2015). Unfamiliar face matching: Pairs out-perform individuals and provide a route to training. British Journal of Psychology, 106(3), 433-445. https://doi.org/10.1111/bjop.12103

    Article  PubMed  Google Scholar 

  20. Dunn, J.D., Summersby, S., Towler, A., Davis, J.P., & White, D. (2020) UNSW Face Test: A screening tool for super-recognizers. PLoS ONE 15(11): e0241747. https://doi.org/10.1371/journal.pone.0241747

  21. Esins, J., Schultz, J., Stemper, C., Kennerknecht, I., & Bulthoff, I. (2016). Face perception and test reliabilities in congenital prosopagnosia in seven tests. i-Perception, 7(1), 1-37. https://doi.org/10.1177/2041669515625797.

    Article  Google Scholar 

  22. Field, A. (2017). Discovering statistics using IBM SPSS statistics (5th edition). SAGE Publications.

    Google Scholar 

  23. Fussey, P., & Murray, D. (2019). Independent Report on the London Metropolitan Police Service's Trial of Live Facial Recognition Technology. Essex University’s Human Rights Centre, retrieved from https://www.hrbdt.ac.uk/download/independent-report-on-the-london-metropolitan-police-services-trial-of-live-facial-recognition-technology/

  24. Fysh, M.C., & Bindemann, M. (2018). The Kent Face Matching Test. British Journal of Psychology, 109, 219-231. https://doi.org/10.1111/bjop.12260

    Article  PubMed  Google Scholar 

  25. García-Zurdo, R., Frowd, C. D., & Manzanero, A. L. (2020). Effects of facial periphery on unfamiliar face recognition. Current Psychology, 39, 1767-1773. https://doi.org/10.1007/s12144-018-9863-1

    Article  Google Scholar 

  26. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics (Vol. 1). New York: Wiley.

  27. Jenkins, R., White, D., Van Montfort, X., Burton, M. A. (2011). Variability in photos of the same face. Cognition, 121(3), 313-323. https://doi.org/10.1016/j.cognition.2011.08.001.

    Article  PubMed  Google Scholar 

  28. Kemp, R. I., Caon, A., Howard, M., & Brooks, K. R. (2016). Improving unfamiliar face matching by masking the external facial features. Applied Cognitive Psychology, 30(4), 622-627. https://doi.org/10.1002/acp.3239

    Article  Google Scholar 

  29. Macmillan, N., & Creelman, C. D. (1991). Detection theory: A user’s guide. New York: Cambridge University Press.

  30. Megreya, A. M., & Bindemann, M. (2018). Feature instructions improve face-matching accuracy. PloS one, 13(3), e0193455.

    Article  Google Scholar 

  31. Moore, R. M., & Johnston, R. A. (2013). Motivational incentives improve unfamiliar face matching accuracy. Applied Cognitive Psychology, 27(6), 754-760. https://doi.org/10.1002/acp.2964

    Article  Google Scholar 

  32. Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27(12), 1135–1137. https://doi.org/10.1038/nbt1209-1135

    Article  PubMed  PubMed Central  Google Scholar 

  33. Noyes, E., Davis, J. P., Petrov, P., Gray, K. L. H., Ritchie, K. (2021). The effect of face masks and sunglasses on identity and expression recognition with super-recognizers and typical observers. Royal Society Open Science, 8, 201169. https://doi.org/10.1098/rsos.201169

    Article  PubMed  PubMed Central  Google Scholar 

  34. Noyes, E., Phillips, P., & O’Toole, A. (2017). What is a super-recogniser. In: Bindemann M, Megreya AM, editors. Face processing: Systems, disorders and cultural differences: Nova Science Publishers;  p. 173–201.

  35. Papesh, M. H., & Goldinger, S. D. (2014). Infrequent identity mismatches are frequently undetected. Attention, Perception, & Psychophysics, 76(5), 1335-1349. https://doi.org/10.3758/s13414-014-0630-6.

    Article  Google Scholar 

  36. Papesh, M. H., Heisick, L. L., & Warner, K. A. (2018). The persistent low-prevalence effect in unfamiliar face-matching: The roles of feedback and criterion shifting. Journal of Experimental Psychology: Applied, 24(3), 416. https://doi.org/10.1037/xap0000156.

    Article  PubMed  Google Scholar 

  37. Robertson, D. J., Black, J., Chamberlain, B., Megreya, A. M., & Davis, J. P. (2020). Super-recognisers show an advantage for other race face identification. Applied Cognitive Psychology, 34(1), 205-216. https://doi.org/10.1002/acp.3608

    Article  Google Scholar 

  38. Robertson, D. J., Noyes, E., Dowsett, A. J., Jenkins, R., & Burton, A. M. (2016). Face recognition by metropolitan police super-recognisers. PloS One, 11(2), e0150036.

    Article  Google Scholar 

  39. Robertson, D. J., Fysh, M. C., & Bindemann, M. (2019). Face identity verification: Five challenges facing practitioners. Keesing Journal of Documents & Identity, 59, 3-8. ISSN 1871-272X

    Google Scholar 

  40. Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognizers: People with extraordinary face recognition ability. Psychonomic Bulletin & Review, 16(2), 252-257. https://doi.org/10.3758/PBR.16.2.252

    Article  Google Scholar 

  41. Satchell, L. P., Davis, J. P., Julle-Danière, E., Tupper, N., & Marshman, P. (2019). Recognising faces but not traits: Accurate personality judgment from faces is unrelated to superior face memory. Journal of Research in Personality, 79, 49–58. https://doi.org/10.1016/j.jrp.2019.02.002

  42. Shakeshaft, N. G., & Plomin, R. (2015). Genetic specificity of face recognition. Proceedings of the National Academy of Sciences, 112(41), 12887-12892. https://doi.org/10.1073/pnas.1421881112.

    Article  Google Scholar 

  43. Smith, H. M. J., Andrews, S., Baguley, T., Colloff, M. F., Davis, J. P., White, D., Rockey, J. C., & Flowe, H. D. (2021). Performance of typical and superior face recognisers on a novel interactive face matching procedure. British Journal of Psychology https://doi.org/10.1111/bjop.12499

  44. Stephens, R.G., Semmler, C., & Sauer, J.D. (2017). The effect of the proportion of mismatching trials and task orientation on the confidence-accuracy relationship in unfamiliar face matching. Journal of Experimental Psychology: Applied, 23, 336–353. https://doi.org/10.1037/xap0000130.

    Article  PubMed  Google Scholar 

  45. Susa, K., Michael, S., Dessenberger, S., & Meissner, C. (2019). Imposter Identification in Low Prevalence Environments. Legal and Criminological Psychology, 24, 179-193. 10.1111/lcrp.12138.

  46. Towler, A., Kemp, R. I., Burton, A. M., Dunn, J. D., Wayne, T., Moreton, R., & White, D. (2019). Do professional facial image comparison training courses work? PloS one, 14(2), e0211037.this was deleted by accident. Cannot seem to bring the reference back - please restore this reference. 

  47. Towler, A., Kemp, R. I., & White, D. (2017a). Unfamiliar face matching systems in applied settings. Face processing: systems, disorders and cultural differences.

    Google Scholar 

  48. Towler, A., White, D., & Kemp, R. I. (2017b). Evaluating the feature comparison strategy for forensic face identification. Journal of Experimental Psychology: Applied, 23(1), 47-58. https://doi.org/10.1037/xap0000108.

    Article  PubMed  Google Scholar 

  49. Tummon, H. M., Allen, J., & Bindemann, M. (2020). Body language influences on facial identification at passport control: An exploration in virtual reality. i-Perception, 11(5), Article 2041669520958033. https://doi.org/10.1177/2041669520958033

  50. Valentine, T., & Davis., J. (2015). Forensic Facial Identification: Theory and Practice of Identification from Eyewitnesses, Composites and CCTV. Wiley-Blackwell

  51. Weatherford, D. R., Erickson, W. B., Thomas, J., Walker, M. E., & Schein, B. (2020). You shall not pass: how facial variability and feedback affect the detection of low-prevalence fake IDs. Cognitive Research: Principles and Implications, 5(1), 1-15. https://doi.org/10.1186/s41235-019-0204-1.

    Article  Google Scholar 

  52. Weatherford, D. R., Robertson, D., & Erickson, W. B. (2021). When experience does not promote expertise: security professionals fail to detect low prevalence fake IDs. Cognitive Research: Principles and Implications, 6, 1-27. https://doi.org/10.1186/s41235-021-00288-z

    Article  Google Scholar 

  53. White, D., Dunn, J. D., Schmid, A. C., & Kemp, R. I. (2015a). Error rates in users of automatic face recognition software. PloS ONE, 10(10), e0139827.

    Article  Google Scholar 

  54. White, D., Kemp, R. I., Jenkins, R., Matheson, M., & Burton, A. M. (2014). Passport officers’ errors in face matching. PLoS ONE 9(8), e103510. https://doi.org/10.1371/journal.pone.0103510

    Article  PubMed  PubMed Central  Google Scholar 

  55. White, D., Phillips, J.P., Hahn, C. Hill, M., & O'Toole, A. (2015b). Perceptual expertise in forensic facial image comparison. Proceedings. Biological Sciences / The Royal Society. 282. https://doi.org/10.1098/rspb.2015.1292.

  56. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435(7041), 439-440. https://doi.org/10.1038/435439a

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623-638. https://doi.org/10.1037/0096-3445.136.4.623

    Article  Google Scholar 

  58. Zeinstra, C., Veldhuis, R., & Spreeuwers, L. (2016). Discriminating power of FISWG characteristic descriptors under different forensic use cases. In 2016 International Conference of the Biometrics Special Interest Group (BIOSIG) (pp. 1-7). IEEE.

Download references

Acknowledgements

The authors would like to thank research assistant Katie Read for her contribution to data collection.

Author note

This research was approved by the University of Greenwich Psychology Research Ethics Panel (14 May 2020).

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josh P. Davis.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Open Practice Statement

The data that support the findings of this study are openly available in the Open Science Framework at https://osf.io/n75ha/

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davis, J.P., Dray, C., Petrov, N. et al. Low prevalence match and mismatch detection in simultaneous face matching: Influence of face recognition ability and feature focus guidance. Atten Percept Psychophys 83, 2937–2954 (2021). https://doi.org/10.3758/s13414-021-02348-4

Download citation

Keywords

  • Low-prevalence effect
  • Face matching
  • Internal features
  • External features
  • Super-recognisers