Skip to main content

Stimulus variability and task relevance modulate binding-learning

Abstract

Classical theories of attention posit that integration of features into object representation (or feature binding) requires engagement of focused attention. Studies challenging this idea have demonstrated that feature binding can happen outside of the focus of attention for familiar objects, as well as for arbitrary color-orientation conjunctions. Detection performance for arbitrary feature conjunction improves with training, suggesting a potential role of perceptual learning mechanisms in the integration of features, a process called “binding-learning”. In the present study, we investigate whether stimulus variability and task relevance, two critical determinants of visual perceptual learning, also modulate binding-learning. Transfer of learning in a visual search task to a pre-exposed color-orientation conjunction was assessed under conditions of varying stimulus variability and task relevance. We found transfer of learning for the pre-exposed feature conjunctions that were trained with high variability (Experiment 1). Transfer of learning was not observed when the conjunction was rendered task-irrelevant during training due to pop-out targets (Experiment 2). Our findings show that feature binding is determined by principles of perceptual learning, and they support the idea that functions traditionally attributed to goal-driven attention can be grounded in the learning of the statistical structure of the environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Higher standard deviation was observed for transfer index data in the low-variability group and the mean of this group could likely be distorted by outliers. A re-analysis on the low-variability group data was performed after removing any transfer index exceeding 2.5 SDs from the mean (mean = -1.52; SD = 5.37; range = -14.95 to 11.90). One participant with a transfer index of -17.64 was removed based on this criterion. As in the main analysis reported in the Results section, a one-sample t test was performed on this data to test if the transfer index significantly differed from 0. Consistent with the observation in the main analysis, transfer index did not significantly differ from zero (mean = 0.062; p = 0.83).

References

  1. Ahissar, M., & Hochstein, S. (1993). Attentional control of early perceptual learning. Proceedings of the National Academy of Sciences, 90(12), 5718–5722.

    Article  Google Scholar 

  2. Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401.

    Article  Google Scholar 

  3. Ahissar, M., Nahum, M., Nelken, I., & Hochstein, S. (2009). Reverse Hierarchies and sensory learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 285–299.

    Article  Google Scholar 

  4. Amitay, S., Hawkey, D. J., & Moore, D. R. (2005). Auditory frequency discrimination learning is affected by stimulus variability. Perception & Psychophysics, 67(4), 691–698.

    Article  Google Scholar 

  5. Andersen, S., Hillyard, S. A., & Müller, M. M. (2008). Attention facilitates multiple stimulus features in parallel in human visual cortex. Current Biology, 18(13), 1006–1009.

    Article  Google Scholar 

  6. Andersen, S., & Müller, M. (2010). Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention. Proceedings of the National Academy of Sciences, 107(31), 13878–13882.

    Article  Google Scholar 

  7. Anderson, G. M., & Humphreys, G. W. (2015). Top-down expectancy versus bottom-up guidance in search for known color-form conjunctions. Attention, Perception, & Psychophysics, 77(8), 2622–2639.

    Article  Google Scholar 

  8. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443.

    PubMed Central  Article  PubMed  Google Scholar 

  9. Banai, K., & Amitay, S. (2015). The effects of stimulus variability on the perceptual learning of speech and non-speech stimuli. PloS One, 10(2), e0118465.

    PubMed Central  Article  PubMed  Google Scholar 

  10. Braet, W., & Humphreys, G. W. (2009). The role of reentrant processes in feature binding: Evidence from neuropsychology and TMS on late onset illusory conjunctions. Visual Cognition, 17(1-2), 25–47.

    Article  Google Scholar 

  11. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    PubMed Central  Article  PubMed  Google Scholar 

  12. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525.

    PubMed Central  Article  PubMed  Google Scholar 

  13. Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S., Anandkumar, A., & et al (2018). Package ‘pwr’. R package version, 1–2.

  14. Clopper, C. G., & Pisoni, D. B. (2004). Effects of talker variability on perceptual learning of dialects. Language and Speech, 47(3), 207–238.

    PubMed Central  Article  PubMed  Google Scholar 

  15. Cowell, R. A., Leger, K. R., & Serences, J. T. (2017). Feature-coding transitions to conjunction-coding with progression through human visual cortex. Journal of Neurophysiology, 118(6), 3194–3214.

    PubMed Central  Article  PubMed  Google Scholar 

  16. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: face detection in just 100 ms face detection in just 100 ms. Journal of Vision, 10(4), 16–16.

    Article  Google Scholar 

  17. Dombrowe, I. C., Olivers, C. N., & Donk, M. (2010). The time course of color-and luminance-based salience effects. Frontiers in Psychology, 1, 189.

    PubMed Central  Article  PubMed  Google Scholar 

  18. Dowd, E. W., & Golomb, J. D. (2019). Object-feature binding survives dynamic shifts of spatial attention. Psychological Science, 30(3), 343–361.

    PubMed Central  Article  PubMed  Google Scholar 

  19. Eglin, M., Robertson, L. C., & Knight, R. T. (1989). Visual search performance in the neglect syndrome. Journal of Cognitive Neuroscience, 1(4), 372–385.

    Article  Google Scholar 

  20. Egner, T. (2014). Creatures of habit (and control): a multi-level learning perspective on the modulation of congruency effects. Frontiers in Psychology, 5, 1247.

    PubMed Central  Article  PubMed  Google Scholar 

  21. Egner, T., Monti, J. M., Trittschuh, E. H., Wieneke, C. A., Hirsch, J., & Mesulam, M. M. (2008). Neural integration of top-down spatial and feature-based information in visual search. Journal of Neuroscience, 28(24), 6141–6151.

    Article  Google Scholar 

  22. Esterman, M. (2000). Preattentive and attentive visual search in individuals with hemispatial neglect. Neuropsychology, 14(4), 599.

    Article  Google Scholar 

  23. Evans, K. K., & Treisman, A. (2005). Perception of objects in natural scenes: is it really attention free?. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1476.

    Google Scholar 

  24. Frank, S. M., Reavis, E. A., Tse, P. U., & Greenlee, M. W. (2014). Neural mechanisms of feature conjunction learning: enduring changes in occipital cortex after a week of training. Human Brain Mapping, 35(4), 1201–1211.

    Article  Google Scholar 

  25. Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. Current Biology, 14(7), 573–578.

    Article  Google Scholar 

  26. Geng, J. J., & Behrmann, M. (2006). Competition between simultaneous stimuli modulated by location probability in hemispatial neglect. Neuropsychologia, 44(7), 1050–1060.

    Article  Google Scholar 

  27. Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49(1), 585–612.

    Article  Google Scholar 

  28. Hickey, C., van Zoest, W., & Theeuwes, J. (2010). The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 201(4), 789–796.

    Article  Google Scholar 

  29. Huang, X., Lu, H., Tjan, B. S., Zhou, Y., & Liu, Z. (2007). Motion perceptual learning: when only task-relevant information is learned. Journal of Vision, 7(10), 14–14.

    Article  Google Scholar 

  30. Humphreys, G. W. (2001). A multi-stage account of binding in vision: Neuropsychological evidence. Visual Cognition, 8(3-5), 381–410.

    Article  Google Scholar 

  31. Hung, S. C., & Seitz, A. (2014). Prolonged training at threshold promotes robust retinotopic specificity in perceptual learning. Journal of Neuroscience, 34(25), 8423–8431.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jeter, P. E., Dosher, B. A., Petrov, A., & Lu, Z. L. (2009). Task precision at transfer determines specificity of perceptual learning. Journal of Vision, 9(3), 1–1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang (2018). Habitual versus goal-driven attention. Cortex, 102, 107–120.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jiang, Swallow, K.M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 285.

    Google Scholar 

  35. Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited. Vision Research, 46(11), 1762–1776.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99(14), 9596–9601.

    Article  Google Scholar 

  37. Liang, J. C., Erez, J., Zhang, F., Cusack, R., & Barense, M. D. (2020). Experience transforms conjunctive object representations: Neural evidence for unitization after visual expertise. Cerebral Cortex, 30(5), 2721–2739.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lobley, K., & Walsh, V. (1998). Perceptual learning in visual conjunction search. Perception, 27(10), 1245–1255.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu, Z. L., Chu, W., Dosher, B. A., & Lee, S. (2005). Independent perceptual learning in monocular and binocular motion systems. Proceedings of the National Academy of Sciences, 102(15), 5624–5629.

    Article  Google Scholar 

  40. Paffen, C. L., Gayet, S., Heilbron, M., & Van der Stigchel, S. (2018). Attention-based perceptual learning does not affect access to awareness. Journal of Vision, 18(3), 7–7.

    Article  Google Scholar 

  41. Peelen, M. V., Fei-Fei, L., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 460(7251), 94–97.

    PubMed Central  Article  PubMed  Google Scholar 

  42. Rappaport, S. J., Humphreys, G. W., & Riddoch, M. J. (2013). The attraction of yellow corn: Reduced attentional constraints on coding learned conjunctive relations. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 1016.

    Google Scholar 

  43. Rappaport, S. J., Riddoch, M. J., Chechlacz, M., & Humphreys, G. W. (2016). Unconscious familiarity-based color–form binding: Evidence from visual extinction. Journal of Cognitive Neuroscience, 28(3), 501–516.

    Article  Google Scholar 

  44. Reddy, L., Reddy, L., & Koch, C. (2006). Face identification in the near-absence of focal attention. Vision Research, 46(15), 2336–2343.

    Article  Google Scholar 

  45. Reddy, L., Wilken, P., & Koch, C. (2004). Face-gender discrimination is possible in the near-absence of attention. Journal of Vision, 4(2), 4–4.

    Article  Google Scholar 

  46. Robertson, L., Treisman, A., Friedman-Hill, S., & Grabowecky, M. (1997). The interaction of spatial and object pathways: Evidence from Balint’s syndrome. Journal of Cognitive Neuroscience, 9(3), 295–317.

    Article  Google Scholar 

  47. Robertson, L., Treisman, A., & et al. (1995). Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science, 269(5225), 853–855.

    Article  Google Scholar 

  48. Salovich, N. A., Remington, R. W., & Jiang, Y. V. (2018). Acquisition of habitual visual attention and transfer to related tasks. Psychonomic Bulletin & Review, 25(3), 1052–1058.

    Article  Google Scholar 

  49. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225.

    Article  Google Scholar 

  50. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–218.

    Article  Google Scholar 

  51. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. detection, search, and attention. Psychological review, 84(1), 1.

    Article  Google Scholar 

  52. Schwartz, S., Maquet, P., & Frith, C. (2002). Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proceedings of the National Academy of Sciences, 99(26), 17137–17142.

    Article  Google Scholar 

  53. Seitz, A., & Watanabe, T. (2005). A unified model for perceptual learning. Trends in Cognitive Sciences, 9(7), 329–334.

    Article  Google Scholar 

  54. Seitz, A., & Watanabe, T. (2009). The phenomenon of task-irrelevant perceptual learning. Vision Research, 49(21), 2604–2610.

    PubMed Central  Article  PubMed  Google Scholar 

  55. Shibata, K., Sagi, D., & Watanabe, T. (2014). Two-stage model in perceptual learning: toward a unified theory. Annals of the New York Academy of Sciences, 1316a, 18.

    Article  Google Scholar 

  56. Sigman, M., Pan, H., Yang, Y., Stern, E., Silbersweig, D., & Gilbert, C. D. (2005). Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron, 46 (5), 823–835.

    PubMed Central  Article  PubMed  Google Scholar 

  57. Sowden, P. T., Davies, I. R., & Roling, P. (2000). Perceptual learning of the detection of features in X-ray images: a functional role for improvements in adults’ visual sensitivity? Journal of Experimental Psychology: Human Perception and Performance, 26(1), 379.

    Google Scholar 

  58. Su, Y., Lai, Y., Huang, W., Tan, W., Qu, Z., & Ding, Y. (2014). Short-term perceptual learning in visual conjunction search. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1415.

    Google Scholar 

  59. Theeuwes, J. (1994). Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 799.

    Google Scholar 

  60. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522.

    Article  Google Scholar 

  61. Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1295–1306.

    PubMed Central  Article  PubMed  Google Scholar 

  62. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    Article  Google Scholar 

  63. Treisman, A., & Schmidt, H. (1982). Illusory conjunctions in the perception of objects. Cognitive Psychology, 14, 107–141.

    Article  Google Scholar 

  64. VanRullen, R. (2007). The power of the feed-forward sweep. Advances in Cognitive Psychology, 3(1-2), 167.

    Article  Google Scholar 

  65. VanRullen, R. (2009). Binding hardwired versus on-demand feature conjunctions. Visual Cognition, 17(1-2), 103–119.

    Article  Google Scholar 

  66. Vickery, T. J., Sussman, R. S., & Jiang, Y. V. (2010). Spatial context learning survives interference from working memory load. Journal of Experimental Psychology: Human Perception and Performance, 36 (6), 1358.

    Google Scholar 

  67. Walsh, V., Ashbridge, E., & Cowey, A. (1998). Cortical plasticity in perceptual learning demonstrated by transcranial magnetic stimulation. Neuropsychologia, 36(1), 45–49.

    Article  Google Scholar 

  68. Wang, B., & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13.

    Google Scholar 

  69. Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7), 1763–1774.

    Article  Google Scholar 

  70. Watanabe, T., Náñez, J. E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413(6858), 844.

    Article  Google Scholar 

  71. Wildegger, T., Riddoch, J., & Humphreys, G. W. (2015). Stored color–form knowledge modulates perceptual sensitivity in search. Attention, Perception, & Psychophysics, 77(4), 1223–1238.

    Article  Google Scholar 

  72. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601.

    PubMed Central  PubMed  Google Scholar 

  73. Yashar, A., & Carrasco, M. (2016). Rapid and long-lasting learning of feature binding. Cognition, 154, 130–138.

    PubMed Central  Article  PubMed  Google Scholar 

  74. Yashar, A., Wu, X., Chen, J., & Carrasco, M. (2019). Crowding and binding: Not all feature dimensions behave in the same way. Psychological Science, 30(10), 1533–1546.

    PubMed Central  Article  PubMed  Google Scholar 

  75. Zhang, J. Y., Zhang, G. L., Xiao, L. Q., Klein, S. A., Levi, D. M., & Yu, C. (2010). Rule-based learning explains visual perceptual learning and its specificity and transfer. Journal of Neuroscience, 30 (37), 12323–12328.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Meera Mary Sunny for helpful comments on an earlier version of this draft. This research was supported by IIT-GN ORES awarded to NG. We declare no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nithin George.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open practices statement

The reported experiments were not preregistered. The data have been uploaded to a repository (https://osf.io/tz8g5/?view_only=ad2fb4abf1d14456a6565f76ee780ccf).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

George, N., Egner, T. Stimulus variability and task relevance modulate binding-learning. Atten Percept Psychophys (2021). https://doi.org/10.3758/s13414-021-02338-6

Download citation

Keywords

  • Feature binding
  • Perceptual learning
  • Habitual attention
  • Visual search
  • Variability