Skip to main content

Different measures of holistic face processing tap into distinct but partially overlapping mechanisms

Abstract

Holistic processing, which includes the integration of facial features and analysis of their relations to one another, is a hallmark of what makes faces ‘special’. Various experimental paradigms purport to measure holistic processing but these have often produced inconsistent results. This has led researchers to question the nature and structure of the mechanism(s) underlying holistic processing. Using an individual differences approach, researchers have examined relations between various measures of holistic processing in an attempt to resolve these questions. In keeping with this, we examined relationships between four commonly used measures of holistic face processing in a large group of participants (N = 223): (1) The Face Inversion Effect, (2) the Part Whole Effect (PWE), (3) the Composite Face Effect, and (4) the Configural Featural Detection Task (CFDT). Several novel methodological and analytical elements were introduced, including the use of factor analysis and the inclusion of control conditions to confirm the face specificity of all of the effects measured. The four indexes of holistic processing derived from each measure loaded onto two factors, one encompassing the PWE and the CFDT, and one encompassing the CE. The 16 conditions tested across the four tasks loaded onto four factors, each factor corresponding to a different measure. These results, together with those of other studies, suggest that holistic processing is a multifaceted construct and that different measures tap into distinct but partially overlapping elements of it.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    While the distinction between configural and holistic was made explicit in earlier studies (Maurer et al., 2002), the two concepts seem to have merged in more recent literature (Richler et al., 2012). This has led us, and others (e.g., Rezlescu et al., 2017), to incorporate these two mechanisms under the umbrella term ‘holistic’.

  2. 2.

    We have addressed the question of whether holistic processing is linked to general face recognition abilities in a separate study (Nelson et al., 2016). The reader can turn to the following for more information: DeGutis et al. (2013b); Konar et al. (2010); McGugin et al. (2012); Richler, Cheung, and Gauthier (2011a); Richler et al. (2014, 2015); R. Wang et al. (2012).

  3. 3.

    As previously mentioned, holistic processing can be elicited by objects of expertise. As such, the effects revealed by these paradigms can be found in rare cases with individuals who have developed expertise with individuation of other homogeneous nonface object categories via lifelong exposure or extensive training (see Richler & Gauthier, 2014; but see McKone et al., 2007).

  4. 4.

    The amount of shared variance between tasks remained modest even after disattenuation (see Supplement: Disattenuated correlations).

References

  1. Boutet, I., Collin, C., & Faubert, J. (2003). Configural face encoding and spatial frequency information. Attention, Perception, & Psychophysics, 65(7), 1078–1093. https://doi.org/10.3758/BF03194835

    Article  Google Scholar 

  2. Boutet, I., & Faubert, J. (2006). Recognition of faces and complex objects in younger and older adults. Memory & Cognition, 34(4), 854–864. https://doi.org/10.3758/BF03193432

    Article  Google Scholar 

  3. Boutet, I., Gentes-Hawn, A., & Chaudhuri, A. (2002). The influence of attention on holistic face encoding. Cognition, 84(3), 321–341. https://doi.org/10.1016/S0010-0277(02)00072-0

    Article  PubMed  Google Scholar 

  4. Boutet, I., Lemieux, C. L., Goulet, M. A., & Collin, C. A. (2017). Faces elicit different scanning patterns depending on task demands. Attention, Perception, & Psychophysics, 79(4), 1050–1063. https://doi.org/10.3758/s13414-017-1284-y.

    Article  Google Scholar 

  5. Boutet, I., & Meinhardt-Injac, B. (2018). Age differences in face processing: The role of perceptual degradation and holistic processing. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 74(6), 933–942. https://doi.org/10.1093/geronb/gbx172

    Article  Google Scholar 

  6. Boutet, I., Shah, D. K., Collin, C. A., Berti, S., Persike, M., & Meinhardt-Injac, B. (2020). Age-related changes in amplitude, latency and specialization of ERP responses to faces and watches. Aging, Neuropsychology, and Cognition, 1–28. Advance online publication. https://doi.org/10.1080/13825585.2019.1708253

  7. Brecht, K. F., Wagener, L., Ostojić, L., Clayton, N. S., & Nieder, A. (2017). Comparing the face inversion effect in crows and humans. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 203(12), 1017–1027. https://doi.org/10.1007/s00359-017-1211-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burton, A. M., Schweinberger, S. R., Jenkins, R., & Kaufmann, J. M. (2015). Arguments against a configural processing account of familiar face recognition. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 10(4), 482–496. https://doi.org/10.1177/1745691615583129

    Article  PubMed  Google Scholar 

  9. Caharel, S., Fiori, N., Bernard, C., Lalonde, R., & Rebaï, M. (2006). The effects of inversion and eye displacements of familiar and unknown faces on early and late-stage ERPs. International Journal of Psychophysiology, 62(1), 141–151. https://doi.org/10.1016/j.ijpsycho.2006.03.002

    Article  PubMed  Google Scholar 

  10. Callender, J. C., & Osburn, H. G. (1979). An empirical comparison of coefficient alpha, Guttman's lambda-2, and MSPLIT maximized split-half reliability estimates. Journal of Educational Measurement, 89–99.

  11. Carbon, C. C., & Leder, H. (2005). When feature information comes first! Early processing of inverted faces. Perception, 34(9), 1117–1134. https://doi.org/10.1068/p5192

    Article  PubMed  Google Scholar 

  12. Cooper, S. R., Gonthier, C., Barch, D. M., & Braver, T. S. (2017). The role of psychometrics in individual differences research in cognition: A case study of the AX-CPT. Frontiers in Psychology, 8, 1–16. https://doi.org/10.3389/fpsyg.2017.01482

    Article  Google Scholar 

  13. Corrow, S. L., Dalrymple, K. A., & Barton, J. J. (2016). Prosopagnosia: Current perspectives. Eye and Brain, 8, 165–175. https://doi.org/10.2147/EB.S92838

    Article  PubMed  PubMed Central  Google Scholar 

  14. Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 1–9. http://www.pareonline.net/pdf/v10n7.pdf

    Google Scholar 

  15. Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12(11), 671–684. https://doi.org/10.1037/h0043943

    Article  Google Scholar 

  16. DeGutis, J., Cohan, S., Mercado, R. J., Wilmer, J., & Nakayama, K. (2013). Holistic processing of the mouth but not the eyes in developmental prosopagnosia. Cognitive Neuropsychology, 29(5/6), 419–446. https://doi.org/10.1080/02643294.2012.754745

    Article  Google Scholar 

  17. DeGutis, J., Wilmer, J., Mercado, R. J., & Cohan, S. (2013). Using regression to measure holistic face processing reveals a strong link with face recognition ability. Cognition, 126(1), 87–100. https://doi.org/10.1016/j.cognition.2012.09.004

    Article  PubMed  Google Scholar 

  18. Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107–117. https://doi.org/10.1037//0096-3445.115.2.107

    Article  Google Scholar 

  19. Edelman, G. M., & Gally, J. A. (2013). Reentry: A key mechanism for integration of brain function. Frontiers in Integrative Neuroscience, 7, 1–6. https://doi.org/10.3389/fnint.2013.00063

    Article  Google Scholar 

  20. Farah, M. J., Levinson, K. L., & Klein, K. L. (1995). Face perception and within-category discrimination in prosopagnosia. Neuropsychologia, 33(6), 661–674.

  21. Farah, M. J., Wilson, K. D., Tanaka, J. N., & Drain, M. (1998). What is “special” about face perception? Psychological Review, 105(3), 482–498. https://doi.org/10.1037/0033-295X.105.3.482

    Article  PubMed  Google Scholar 

  22. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  PubMed Central  Google Scholar 

  23. Feng, C., Wang, H., Lu, N., Chen, T., He, H., Lu, Y., & Tu, X. M. (2014). Log-transformation and its implications for data analysis. Shanghai Archives of Psychiatry, 26(2), 105–109. https://doi.org/10.3969/j.issn.1002-0829.2014.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  24. Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception, 29(2), 159–170. https://doi.org/10.1068/p3012

    Article  PubMed  Google Scholar 

  25. Gauthier, I., Chua, K.-W., & Richler, J. J. (2018). How holistic processing of faces relates to cognitive control and intelligence. Attention, Perception & Psychophysics, 80(6), 1449–1460. https://doi.org/10.3758/s13414-018-1518-7

    Article  Google Scholar 

  26. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 51(1), 59–67. https://doi.org/10.1016/S0006-3223(01)01330-0

    Article  PubMed  Google Scholar 

  27. Hedge, C., Powell, G., & Sumner, P. (2017). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186. https://doi.org/10.3758/s13428-017-0935-1

    Article  PubMed Central  Google Scholar 

  28. Hildebrandt, A., Sommer, W., Herzmann, G., & Wilhelm, O. (2010). Structural invariance and age-related performance differences in face cognition. Psychology and Aging, 25(4), 794–810. https://doi.org/10.1037/a0019774

    Article  PubMed  Google Scholar 

  29. Hogg, R. V. (1979). An introduction to robust estimation. in R. L. Launer & G. N. Wilkinson (Eds.), Robustness in statistics (pp. 1–17). Academic Press.

  30. Huber, P. J. (1981). Robust statistics. John Wiley and Sons.

  31. Humphreys, L. G. (1990). Erroneous interpretation of difference scores: Application to a recent example. Intelligence, 14(2), 231–233. https://doi.org/10.1016/0160-2896%2890%2990005-E

    Article  Google Scholar 

  32. Jacques, C., & Rossion, B. (2009). The initial representation of individual faces in the right occipito-temporal cortex is holistic: Electrophysiological evidence from the composite face illusion. Journal of Vision, 9(6), 8.1–16. https://doi.org/10.1167/9.6.8

    Article  Google Scholar 

  33. Jaworska, K., Yi, F., Ince, R. A. A., van Rijsbergen, N. J., Schyns, P. G., & Rousselet, G. A. (2019). Healthy aging delays the neural processing of face features relevant for behavior by 40 ms. Human Brain Mapping, 41(5), 1212–1225. https://doi.org/10.1002/hbm.24869

    Article  PubMed  PubMed Central  Google Scholar 

  34. Konar, Y., Bennett, P. J., & Sekuler, A. B. (2010). Holistic processing is not correlated with face-identification accuracy. Psychological Science, 21(1), 38–43. https://doi.org/10.1177/0956797609356508

    Article  PubMed  Google Scholar 

  35. Lavallée, M. M., Gandini, D., Rouleau, I., Vallet, G. T., Joannette, M., Kergoat, M.-J., Busigny, T., Rossion, B., & Joubert, S. (2016). A qualitative impairment in face perception in Alzheimer’s disease: Evidence from a reduced face inversion effect. Journal of Alzheimer’s Disease, 51(4), 1225–1236. https://doi.org/10.3233/JAD-151027

    Article  PubMed  Google Scholar 

  36. Leder, H., & Bruce, V. (2000). When inverted faces are recognized: The role of configural information in face recognition. The Quarterly Journal of Experimental Psychology: Section A, 53(2), 513–536. https://doi.org/10.1080/027249800390583

    Article  Google Scholar 

  37. Makel, M. C., & Plucker, J. A. (2014). Facts are more important than novelty: Replication in the education sciences. Educational Researcher, 43(6), 304–316. https://doi.org/10.3102/0013189X14545513

    Article  Google Scholar 

  38. Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255–260. https://doi.org/10.1016/S1364-6613%2802%2901903-4

    Article  PubMed  Google Scholar 

  39. McGugin, R. W., Richler, J. J., Herzmann, G., Speegle, M., & Gauthier, I. (2012). The Vanderbilt Expertise Test reveals domain-general and domain-specific sex effects in object recognition. Vision Research, 69, 10–22. https://doi.org/10.1016/j.visres.2012.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  40. McKone, E., Davies, A. A., Darke, H., Crookes, K., Wickramariyaratne, T., Zappia, S., Fiorentini, C., Favelle, S., Broughton, M., & Fernando, D. (2013). Importance of the inverted control in measuring holistic face processing with the composite effect and part-whole effect. Frontiers in Psychology, 4, 1–33. https://doi.org/10.3389/fpsyg.2013.00033

    Article  Google Scholar 

  41. McKone, E., Kanwisher, N., & Duchaine, B. C. (2007). Can generic expertise explain special processing for faces? Trends in Cognitive Sciences, 11(1), 8–15. https://doi.org/10.1016/j.tics.2006.11.002

    Article  PubMed  Google Scholar 

  42. Mckone E. M., & Robbins, R. R. (2011) Are faces special? In A. C. Calder, G. Rhodes, M. H. Johnson, & J. V. Haxby (Eds.), The handbook of face perception (pp. 149–176). Oxford University Press.

  43. Meinhardt, G., Meinhardt-Injac, B., & Persike, M. (2019). Orientation-invariance of individual differences in three face processing tasks. Royal Society Open Science, 6(1), 1–22. https://doi.org/10.1098/rsos.181350

    Article  Google Scholar 

  44. Meinhardt-Injac, B., Boutet, I., Persike, M., Meinhardt, G., & Imhof, M. (2016). From development to aging: Holistic face perception in children, younger and older adults. Cognition, 158, 134–146. https://doi.org/10.1016/j.cognition.2016.10.020

    Article  PubMed  Google Scholar 

  45. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734

    Article  PubMed  PubMed Central  Google Scholar 

  46. Musel, B., Chauvin, A., Guyader, N., Chokron, S., & Peyrin, C. (2012). Is coarse-to-fine strategy sensitive to normal aging? PLOS ONE, 7(6), 1–6. https://doi.org/10.1371/journal.pone.0038493

    Article  Google Scholar 

  47. Negrini, M., Brkić, D., Pizzamiglio, S., Premoli, I., & Rivolta, D. (2017). Neurophysiological correlates of featural and spacing processing for face and nonface stimuli. Frontiers in Psychology, 8, 1–9. https://doi.org/10.3389/fpsyg.2017.00333

    Article  Google Scholar 

  48. Nelson, E.A., Boutet, I., & Collin, C. A. (2016). Commonly used face recognition tasks do not measure the same construct: Evidence from four holistic/configural tasks and the Cambridge Face Memory Test. Canadian Journal of Experimental Psychology-Revue Canadienne do Psychologie Experimentale, 70, 399–399.

    Google Scholar 

  49. Osborne, J. W., & Costello, A. B. (2009). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pan-Pacific Management Review, 12(2), 131–146.

    Google Scholar 

  50. Peters, J. C., Goebel, R., & Goffaux, V. (2018). From coarse to fine: Interactive feature processing precedes local feature analysis in human face perception. Biological Psychology, 138, 1–10. https://doi.org/10.1016/j.biopsycho.2018.07.009

    Article  PubMed  Google Scholar 

  51. Racca, A., Amadei, E., Ligout, S., Guo, K., Meints, K., & Mills, D. (2010). Discrimination of human and dog faces and inversion responses in domestic dogs (Canis familiaris). Animal Cognition, 13(3), 525–533. https://doi.org/10.1007/s10071-009-0303-3

    Article  PubMed  Google Scholar 

  52. Rakover, S. S. (2013). Explaining the face-inversion effect: The face–scheme incompatibility (FSI) model. Psychonomic Bulletin & Review, 20(4), 665–692. https://doi.org/10.3758/s13423-013-0388-1

    Article  Google Scholar 

  53. Rezlescu, C., Susilo, T., Wilmer, J. B., & Caramazza, A. (2017). The inversion, part-whole, and composite effects reflect distinct perceptual mechanisms with varied relationships to face recognition. Journal of Experimental Psychology. Human Perception and Performance, 43(12), 1961–1973. https://doi.org/10.1037/xhp0000400

    Article  PubMed  Google Scholar 

  54. Richler, J. J., Bukach, C. M., & Gauthier, I. (2009a). Context influences holistic processing of nonface objects in the composite task. Attention, Perception, & Psychophysics, 71(3), 530–540. https://doi.org/10.3758/APP.71.3.530

    Article  Google Scholar 

  55. Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic processing predicts face recognition. Psychological Science, 22(4), 464–471. https://doi.org/10.1177/0956797611401753

    Article  PubMed  Google Scholar 

  56. Richler, J. J., Floyd, R. J., & Gauthier, I. (2014). The Vanderbilt Holistic Face Processing Test: A short and reliable measure of holistic face processing. Journal of Vision, 14(11):10, 1–14. https://doi.org/10.1167/14.11.10

    Article  PubMed  PubMed Central  Google Scholar 

  57. Richler, J. J., Floyd, R. J., & Gauthier, I. (2015). About-face on face recognition ability and holistic processing. Journal of Vision, 15(9), 1-12. https://doi.org/10.1167/15.9.15

    Article  Google Scholar 

  58. Richler, J. J., & Gauthier, I. (2014). A meta-analysis and review of holistic face processing. Psychological Bulletin, 140(5), 1281–1302. https://doi.org/10.1037/a0037004

    Article  PubMed  PubMed Central  Google Scholar 

  59. Richler, J. J., Mack, M. L., Gauthier, I., & Palmeri, T. J. (2009b). Holistic processing of faces happens at a glance. Vision Research, 49(23), 2856–2861. https://doi.org/10.1016/j.visres.2009.08.025.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Richler, J. J., Mack, M. L., Palmeri, T. J., & Gauthier, I. (2011). Inverted faces are (eventually) processed holistically. Vision Research, 51(3), 333-342. https://doi.org/10.1016/j.visres.2010.11.014

    Article  PubMed  Google Scholar 

  61. Richler, J. J., Palmeri, T. J., & Gauthier, I. (2012). Meanings, mechanisms, and measures of holistic processing. Frontiers in Psychology, 3,1-6. https://doi.org/10.3389/fpsyg.2012.00553

    Article  Google Scholar 

  62. Riesenhuber, M., & Wolff, B. S. (2009). Task effects, performance levels, features, configurations, and holistic face processing: A reply to Rossion. Acta Psychologica, 132(3), 286–292. https://doi.org/10.1016/j.actpsy.2009.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  63. Robbins, R., & McKone, E. (2003). Can holistic processing be learned for inverted faces?. Cognition, 88(1), 79–107.

    Article  Google Scholar 

  64. Robotham, R. J., & Starrfelt, R. (2018). Tests of whole upright face processing in prosopagnosia: A literature review. Neuropsychologia, 121, 106–121. https://doi.org/10.1016/j.neuropsychologia.2018.10.018

    Article  PubMed  Google Scholar 

  65. Ross, D. A., Richler, J. J., & Gauthier, I. (2015). Reliability of composite-task measurements of holistic face processing. Behavior Research Methods, 47(3), 736–743. https://doi.org/10.3758/s13428-014-0497-4

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rossion, B. (2013). The composite face illusion: A whole window into our understanding of holistic face perception. Visual Cognition, 21, 139–253. https://doi.org/10.1080/13506285.2013.772929.

    Article  Google Scholar 

  67. Rossion, B., & Boremanse, A. (2008). Nonlinear relationship between holistic processing of individual faces and picture-plane rotation: Evidence from the face composite illusion. Journal of Vision, 8(4), 1–13. https://doi.org/10.1167/8.4.3

    Article  PubMed  Google Scholar 

  68. Rotshtein, P., Geng, J. J., Driver, J., & Dolan, R. J. (2007). Role of features and second-order spatial relations in face discrimination, face recognition, and individual face skills: Behavioral and functional magnetic resonance imaging data. Journal of Cognitive Neuroscience, 19(9), 1435–1452. https://doi.org/10.1162/jocn.2007.19.9.1435

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schwaninger, A., Lobmaier, J. S., & Collishaw, S. M. (2002). Role of featural and configural information in familiar and unfamiliar face recognition. In: H. H. Bülthoff, C. Wallraven, S.-W. Lee, & T. A. Poggio (Eds.), Biologically motivated computer vision (Vol. 2525, pp. 643–650). https://doi.org/10.1007/3-540-36181-2_64

  70. Sergent, J. (1984). An investigation into component and configural processes underlying face perception. British Journal of Psychology, 75(2), 221–242. https://doi.org/10.1111/j.2044-8295.1984.tb01895.x

    Article  PubMed  Google Scholar 

  71. Stein, T., Sterzer, P., & Peelen, M. V. (2012). Privileged detection of conspecifics: Evidence from inversion effects during continuous flash suppression. Cognition, 125(1), 64–79. https://doi.org/10.1016/j.cognition.2012.06.005

    Article  PubMed  Google Scholar 

  72. Strauss, M. E., & Smith, G. T. (2009). Construct validity: Advances in theory and methodology. Annual Review of Clinical Psychology, 5, 1–25. https://doi.org/10.1016/j.neulet.2005.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sugase-Miyamoto, Y., Matsumoto, N., & Kawano, K. (2011). Role of temporal processing stages by inferior temporal neurons in facial recognition. Frontiers in Psychology, 2, 1–8. https://doi.org/10.3389/fpsyg.2011.00141

    Article  Google Scholar 

  74. Sunday, M. A., Richler, J. J., & Gauthier, I. (2017). Limited evidence of individual differences in holistic processing in different versions of the part-whole paradigm. Attention, Perception, & Psychophysics, 79(5), 1453–1465. https://doi.org/10.3758/s13414-017-1311-z

    Article  Google Scholar 

  75. Susilo, T., Rezlescu, C., & Duchaine, B. (2013). The composite effect for inverted faces is reliable at large sample sizes and requires the basic face configuration. Journal of Vision, 13(13), 1–9. https://doi.org/10.1167/13.13.14

    Article  Google Scholar 

  76. Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Allyn & Bacon.

  77. Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology, 46(2), 225–245. https://doi.org/10.1080/14640749308401045

    Article  PubMed  Google Scholar 

  78. Tanaka, J. W., & Sengco, J. A. (1997). Features and their configuration in face recognition. Memory & Cognition, 25(5), 583-592. https://doi.org/10.3758/BF03211301

    Article  Google Scholar 

  79. Tanaka, J. W., & Simonyi, D. (2016). The “parts and wholes” of face recognition: A review of the literature. Quarterly Journal of Experimental Psychology, 69(10), 1876–1889. https://doi.org/10.1080/17470218.2016.1146780

    Article  PubMed  Google Scholar 

  80. Taschereau-Dumouchel, V., Rossion, B., Schyns, P. G., & Gosselin, F. (2010). Interattribute distances do not represent the identity of real world faces. Frontiers in Psychology, 1, 1–10.

    Google Scholar 

  81. Tomonaga, M. (2018). Inverted face with upright body: evidence for face inversion effect in Japanese macaques (Macaca fuscata) under the preferential looking procedure. BioRxiv, 1–13. https://doi.org/10.1101/266676

  82. Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face recognition. The Quarterly Journal of Experimental Psychology Section A, 43(2), 161–204. https://doi.org/10.1080/14640749108400966

    Article  Google Scholar 

  83. Valentine, T., Lewis, M. B., & Hills, P. J. (2016). Face-space: A unifying concept in face recognition research. The Quarterly Journal of Experimental Psychology, 69(10), 1996–2019. https://doi.org/10.1080/17470218.2014.990392

    Article  PubMed  Google Scholar 

  84. Vandierendonck, A. (2017). A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behavior Research Methods, 49(2), 653–673. https://doi.org/10.3758/s13428-016-0721-5

    Article  PubMed  Google Scholar 

  85. Wang, M.-Y., & Takeuchi, H. (2017). Individual recognition and the “face inversion effect” in medaka fish (Oryzias latipes). ELife, 6, 1–18. https://doi.org/10.7554/eLife.24728

    Article  Google Scholar 

  86. Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual differences in holistic processing predict face recognition ability. Psychological Science, 23(2), 169–177. https://doi.org/10.1371/journal.pone.0058253

    Article  PubMed  Google Scholar 

  87. Wang, Z., Quinn, P. C., Jin, H., Sun, Y. H. P., Tanaka, J. W., Pascalis, O., & Lee, K. (2019). A regional composite-face effect for species-specific recognition: Upper and lower halves play different roles in holistic processing of monkey faces. Vision Research, 157, 89–96. https://doi.org/10.1016/j.visres.2018.03.004

    Article  PubMed  Google Scholar 

  88. Watson, T. L. (2013). Implications of holistic face processing in autism and schizophrenia. Frontiers in Psychology, 4, 1–11. https://doi.org/10.3389/fpsyg.2013.00414

    Article  Google Scholar 

  89. Wilhelm, O., Herzmann, G., Kunina, O., Danthiir, V., Schacht, A., & Sommer, W. (2010). Individual differences in perceiving and recognizing faces—One element of social cognition. Journal of Personality and Social Psychology, 99(3), 530–548.

    Article  Google Scholar 

  90. Wilmer, J. B. (2008). How to use individual differences to isolate functional organization, biology, and utility of visual functions; with illustrative proposals for stereopsis. Spatial Vision, 21(6), 561–579. https://doi.org/10.1163/156856808786451408

    Article  PubMed  PubMed Central  Google Scholar 

  91. Winne, P. H., & Belfry, M. J. (1982). Interpretive problems when correcting for attenuation. Journal of Educational Measurement, 19(2), 125–134. https://doi.org/10.1111/j.1745-3984.1982.tb00121.x

    Article  Google Scholar 

  92. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145.

    Article  Google Scholar 

  93. Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), 79–94. https://doi.org/10.20982/tqmp.09.2.p079

    Article  Google Scholar 

  94. Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 16(6), 747–759. https://doi.org/10.1068/p160747n

    Article  PubMed  Google Scholar 

  95. Yovel, G., & Kanwisher, N. (2005). The neural basis of the behavioral face-inversion effect. Current Biology, 15(24), 2256–2262.

    Article  Google Scholar 

  96. Yovel, G., Wilmer, J. B., & Duchaine, B. (2014). What can individual differences reveal about face processing? Frontiers in Human Neuroscience, 8, 1–9. https://doi.org/10.3389/fnhum.2014.00562

    Article  Google Scholar 

Download references

Open practices statement

This study was not preregistered. Raw accuracy and reaction time data are available at https://osf.io/69urz/ (https://doi.org/10.17605/OSF.IO/69URZ).

Author note

This research was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada. We would like to thank Isabel Gauthier for her comments on an earlier version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isabelle Boutet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Public significance statement

Holistic processing, or the integration of facial features and their relations, has become a hallmark of what is considered ‘special’ about faces. We examined the nature and structure of the mechanism(s) underlying holistic face processing by measuring relationships between four commonly used measures of holistic processing. Results suggest that holistic processing is not a single process but a number of related ones, and that different measures of holistic processing tap into distinct subprocesses. This finding helps us better understand how our visual system interprets human faces, one of the most important categories of visual stimuli in our environment.

Supplementary Information

ESM 1

(DOCX 1171 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boutet, I., Nelson, E.A., Watier, N. et al. Different measures of holistic face processing tap into distinct but partially overlapping mechanisms. Atten Percept Psychophys 83, 2905–2923 (2021). https://doi.org/10.3758/s13414-021-02337-7

Download citation

Keywords

  • Face recognition
  • Holistic processing
  • Featural processing
  • Configural processing
  • Individual difference scores