Skip to main content

Comparing imagery and perception: Using eye movements to dissociate mechanisms in search

Abstract

It has been demonstrated that color imagery can have a profound impact when generated prior to search, while at the same time, perceptual cues have a somewhat limited influence. Given this discrepancy, the present study evaluated the processes impacted by imagery and perception using a singleton search task where participants had to find an oddball colored target among homogenously colored distractors. Prior to each trial, a perceptual color was displayed or imagery was generated that could match the target, distractors, or neither item in the search array. It was revealed that color imagery led to both a larger benefit when it matched the target and a larger cost when it matched the distractors relative to perceptual cues. By parsing response times into pre-search, search, and response phases based on eye movements, it was revealed that, while imagery and perceptual cues both influenced the search phase, imagery had a significantly greater influence than perceptual cues. Further, imagery influenced pre-search and response phases as well. Overall, the present findings reveal that the influence of imagery is profound as it affects multiple processes in the vision-perception pipeline, while perception only appeared to impact search.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Baier, D., & Ansorge, U. (2019). Investigating the role of verbal templates in contingent capture by color. Attention, Perception, & Psychophysics, 86(6), 1846-1879.

    Article  Google Scholar 

  2. Chang, S., Lewis, D. E., & Pearson, J. (2013). The functional effects of color perception and color imagery. Journal of Vision, 13(10), 1-10.

    Article  Google Scholar 

  3. Cochrane, B. A., & Milliken, B. (2019). Imagined event-files: An interplay between imagined and perceived objects. Psychonomic Bulletin & Review, 26(2), 538-544.

    Article  Google Scholar 

  4. Cochrane, B. A., & Milliken, B. (2020). The representational basis of positive and negative repetition effects. Journal of Experimental Psychology: Human Perception and Performance, 46(3), 252-263.

    PubMed  Google Scholar 

  5. Cochrane, B. A., & Pratt, J. (2020). Re-examining Maljkovic and Nakayama (1994): Conscious expectancy does affect the Priming of Pop-out effect. Attention, Perception, & Psychophysics, 82(5), 2693-2702.

    Article  Google Scholar 

  6. Cochrane, B. A., Ng, V., & Milliken, B. (2021). Top-down imagery overrides the influence of the selection history effects. Consciousness and Cognition. Advanced online publication. https://doi.org/10.1016/j.concog.2021.103153.

  7. Cochrane, B. A., Ng, V., Khosla, A., & Milliken, B. (2021). Looking into the Mind’s Eye: Directed and evaluated imagery vividness modulates imagery-perception congruency effects. Psychonomic Bulletin & Review. Advanced online publication. https://doi.org/10.3758/s13423-020-01868-8

  8. Cochrane, B. A., Nwabuike, A. A., Thomson, D. R., & Milliken, B. (2018). An imagery-induced reversal of intertrial priming in visual search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(4), 572-587.

    PubMed  Google Scholar 

  9. Cochrane, B. A., Siddhpuria, S., & Milliken, B. (2019). Cueing color imagery: A critical analysis of imagery-perception congruency effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(8), 1410-1421.

    PubMed  Google Scholar 

  10. Cochrane, B. A., Townsend, B., Lee, R. C., Legere, J. K., Milliken, B., & Shedden, J. M. (2021). Visual imagery influences attentional guidance during visual search: behavioral and electrophysiological evidence. Attention, Perception, & Psychophysics, 83(1), 58-66.

    Article  Google Scholar 

  11. Cochrane, B. A., Zhu, H., & Milliken, B. (2018). Strategic visual imagery and automatic priming effects in pop-out visual search. Consciousness & Cognition 65, 59-70.

    Article  Google Scholar 

  12. Cousineau, D. (2005). Confidence intervals in within-subject design: a simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42-45.

    Article  Google Scholar 

  13. Cue, X., Jeter, C. B., Yang D., Montague, & Eagleman, D. M. (2007). Vividness of mental imagery: Individual variability can be measured objectively. Vision Research, 47(4), 474-478.

    Article  Google Scholar 

  14. Dijkstra, N., Bosch, S. E., van Gerven, M. A. J. (2017). Vividness of visual imagery depends on the neural overlap with perception in visual areas. Journal of Neuroscience, 37(5), 1367-1373.

    PubMed  Article  Google Scholar 

  15. Dijkstra, N., Bosch, S. E., & van Gerven, M. A. J. (2019). Shared neural mechanisms of visual perception and imagery. Trends in Cognitive Science, 23(5), 423-434.

    Article  Google Scholar 

  16. Grindell, J., Liao, M. R., & Anderson, B. A. (2020). Mind’s Eye vs. Mine eye: Effects of imagery and perceptual priming on singleton search [Poster presentation]. The Object Perception, Attention, and Memory 28th Annual Meeting. (Online Conference)

  17. Hommel, B. (2004). Event files: feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494-500.

    PubMed  Article  Google Scholar 

  18. Kahneman, D., Treisman, A. M., & Gibbs, B. J. (1992). The reviewing of object files: object-specific integration of information. Cognitive Psychology, 24, 175-219.

    PubMed  Article  Google Scholar 

  19. Kawashima, T., & Matsumoto, E. (2017). Cognitive control of attentional guidance by visual and verbal working memory representations. Japanese Psychological Research, 59(1), 49-57.

    Article  Google Scholar 

  20. Leonard, C. J., & Egeth, H. E. (2008). Attentional guidance in singleton search: An examination of top-down, bottom-up, and intertrial factors. Visual Cognition, 16(8), 1078-1091.

    Article  Google Scholar 

  21. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657-672.

    Article  Google Scholar 

  22. Maljkovic, V., & Nakayama, K. (2000). Priming of popout: III. A short-term implicit memory system beneficial for rapid target selection. Visual Cognition, 7(5), 571-595.

    Article  Google Scholar 

  23. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61-64.

    Article  Google Scholar 

  24. Moriya, J. (2018). Visual mental imagery influences attentional guidance. Attention, Perception, & Psychophysics, 80(5), 1127-1142.

    Article  Google Scholar 

  25. Müller, H. J., & Krummenacher, J. (2006). Locus of dimension weighting: preattentive or postselective. Visual Cognition, 14(4-8), 490-513.

    Article  Google Scholar 

  26. Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 1021-1035.

    PubMed  Google Scholar 

  27. Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representations: Ending the imagery debate. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10089-10092.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Pearson, J., Clifford, C. W. G., & Tong, F. (2008). The functional impact of mental imagery on conscious perception. Current Biology, 13(8), 982-986.

    Article  Google Scholar 

  29. Pearson, J., Rademaker, R. L., & Tong, F. (2011). Evaluating the Mind’s Eye: The metacognition of visual imagery. Psychological Science, 22(12), 1535-1542.

    PubMed  Article  Google Scholar 

  30. Reinhart, R. M. G., McClenahan, L. J., & Woodman, G. F. (2015). Visualizing trumps vision in training attention. Psychological Science, 26(7), 1114-1122.

  31. Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends in Cognitive Science, 10(1), 38-45.

    Article  Google Scholar 

  32. Sherwood, R., & Pearson, J. (2010). Closing the mind’s eye: Incoming luminance signals disrupt visual imagery. PLoS One, 5(12), e15217.

    PubMed  PubMed Central  Article  Google Scholar 

  33. Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248-261.

    Google Scholar 

  34. Soto, D., Hodsoil, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Science, 12(9), 342-348.

    Article  Google Scholar 

  35. Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46(6-7), 1010-1018.

    PubMed  Article  Google Scholar 

  36. Theeuwes, J., Reimann, B., & Mortier, K. (2006). Visual search for featural singletons: No top-down modulation, only bottom-up priming. Visual Cognition, 14(4-8), 466-489.

  37. Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology, 47(3), 631-650.

    Article  Google Scholar 

  38. Wantz, A. L., Borst, G., Mast, F. W., & Lobmaier, J. S. (2015). Colors in mind: a novel paradigm to investigate pure color imagery. Journal of Experimental Psychology: Learning, Memory, and Cognition 41(4), 1152-1161.

    PubMed  Google Scholar 

  39. Wolfe, J. M. (2014). Approaches to visual search: Feature integration theory and guided search. In Nobre & S. Kastner (Eds.), The Oxford handbook of attention (pp. 11-55). Oxford University Press.

  40. Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin, & Review, 1(2), 202-238.

    Article  Google Scholar 

  41. Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M.F & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44, 1411-1426.

    Article  Google Scholar 

  42. Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363-377.

    PubMed  Google Scholar 

  43. Zhou, G., Liu, Q., Jiao, J., Zhou, P., Li, H., & Sun, H. J. (2012). Dual-state modulation of the contextual cueing effect: Evidence from eye movement recordings. Journal of Vision, 12(6), 1-13.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by Natural Sciences and Engineering Research Council of Canada Discovery Grants awarded to Bruce Milliken and Jay Pratt. The funding agreement ensured the authors’ independence in designing the study, interpreting the data, writing, and publishing the report. The authors report no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brett A. Cochrane.

Additional information

Open Practices Statement

The experiments reported in this article were not preregistered. The data for all experiments are publicly available at the Center of Open Science website (osf.io/xn97e). Requests for materials can be sent via email to the corresponding author at brett.cochrane@utoronto.ca.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cochrane, B.A., Wang, C., Pratt, J. et al. Comparing imagery and perception: Using eye movements to dissociate mechanisms in search. Atten Percept Psychophys 83, 2879–2890 (2021). https://doi.org/10.3758/s13414-021-02336-8

Download citation

Keywords

  • Attention capture
  • Eye movements
  • Imagery
  • Top-down
  • Visual search