Skip to main content

The development of foraging organization

Abstract

In foraging tasks, multiple targets must be found within a single display. The targets can be of one or more types, typically surrounded by numerous distractors. Visual attention has traditionally been studied with single target search tasks, but adding more targets to the search display results in several additional measures of interest, such as how attention is oriented to different features and locations over time. We measured foraging among five age groups: Children in Grades 1, 4, 7, and 10, as well as adults, using both simple feature foraging tasks and more challenging conjunction foraging tasks, with two target types per task. We assessed participants’ foraging organization, or systematicity when selecting all the targets within the foraging display, on four measures: Intertarget distance, number of intersections, best-r, and the percentage above optimal path length (PAO). We found that foraging organization increases with age, in both simple feature-based foraging and more complex foraging for targets defined by feature conjunctions, and that feature foraging was more organized than conjunction foraging. Separate analyses for different target types indicated that children’s, and to some extent adults’, conjunction foraging consisted of two relatively organized foraging paths through the display where one target type is exhaustively selected before the other target type is selected. Lastly, we found that the development of foraging organization is closely related to the development of other foraging measures. Our results suggest that measuring foraging organization is a promising avenue for further research into the development of visual orienting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adler, S. A., & Orprecio, J. (2006). The eyes have it: Visual pop-out in infants and adults. Developmental Science, 9(2), 189–206.

    Article  Google Scholar 

  2. Appelros, P., Karlsson, G. M., Seiger, A., & Nydevik, I. (2002). Neglect and anosognosia after first-ever stroke: Incidence and relationship to disability. Journal of Rehabilitation Medicine, 34(5), 215–220.

    Article  Google Scholar 

  3. Benjamins, J. S., Dalmaijer, E. S., Ten Brink, A. F., Nijboer, T. C., & Van der Stigchel, S. (2019). Multi-target visual search organisation across the lifespan: Cancellation task performance in a large and demographically stratified sample of healthy adults. Aging, Neuropsychology, and Cognition, 26(5), 731–748.

    Article  Google Scholar 

  4. Bond, A. B. (1982). The bead game: Response strategies in free assortment. Human Factors, 24(1), 101–110.

    Article  Google Scholar 

  5. Brucki, S. M. D., & Nitrini, R. (2008). Cancellation task in very low educated people. Archives of Clinical Neuropsychology, 23(2), 139–147.

    PubMed  Google Scholar 

  6. Burggraaf, R., van der Geest, J. N., Hooge, I. T. & Frens, M. A. (2019). Developmental changes in visual search are determined by changing visuospatial abilities and task repetition: A longitudinal study in adolescents. Applied Neuropsychology: Child, 10(2), 133–143. https://doi.org/10.1080/21622965.2019.1627211.

  7. Buxbaum, L. J., Ferraro, M. K., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., ... Coslett, H. B. (2004). Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology, 62(5), 749–756.

  8. Byrd, D. E., Touradji, P., Tang, M.-X., & Manly, J. T. (2004). Cancellation test performance in African American, Hispanic, and White elderly. Journal of the International Neuropsychological Society, 10, 401–411.

    Article  Google Scholar 

  9. Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A Bayesian optimal foraging model of human visual search. Psychological Science, 23(9), 1047–1054. https://doi.org/10.1177/0956797612440460

    Article  PubMed  Google Scholar 

  10. Dalmaijer, E. S., Li, K. M. S., Gorgoraptis, N., Leff, A. P., Cohen, D. L., Parton, A., . . . Malhotra, P. A. (2018). Randomised, double-blind, placebo-controlled crossover study of single-dose guanfacine in unilateral neglect following stroke. Journal of Neurology, Neurosurgery & Psychiatry, 89(6), 593–598. https://doi.org/10.1136/jnnp-2017-317338

  11. Dalmaijer, E. S., Van der Stigchel, S., Nijboer, T. C. W., Cornelissen, T. H. W., & Husain, M. (2015). CancellationTools: All-in-one software for administration and analysis of cancellation tasks. Behavior Research Methods, 47(4), 1065–1075.

    Article  Google Scholar 

  12. Donders, F. C. (1969). On the speed of mental processes. In W. G. Koster (Ed. & Trans.), Attention and performance, II. (Original work published 1868).

  13. Dukas, R., & Ellner, S. (1993). Information processing and prey detection. Ecology, 74, 1337–1346.

    Article  Google Scholar 

  14. Fabrigoule, C., Rouch, I., Taberly, A., Letenneur, L., Commenges, D., Mazaux, J. M., … Dartigues, J. F. (1998). Cognitive process in preclinical phase of dementia. Brain, 121(1), 135–141. https://doi.org/10.1093/brain/121.1.135

  15. Gainotti, G., Marra, C., & Villa, G. (2001). A double dissociation between accuracy and time of execution on attentional tasks in Alzheimer’s disease and multi-infarct dementia. Brain, 124(4), 731–738. https://doi.org/10.1093/brain/124.4.731

    Article  PubMed  Google Scholar 

  16. Gerhardstein, P., & Rovee-Collier, C. (2002). The development of visual search in infants and very young children. Journal of Experimental Child Psychology, 81, 194–215. https://doi.org/10.1006/jecp.2001.2649

    Article  PubMed  Google Scholar 

  17. Gil-Gómez de Liaño, B. G. G., Quirós-Godoy, M., Pérez-Hernández, E., Cain, M., & Wolfe, J. (2018). Understanding visual search and foraging in cognitive development. Journal of Vision, 18(10), 635-635.

    Article  Google Scholar 

  18. Graham, S. M., Joshi, A., & Pizlo, Z. (2000). The travelling salesman problem: A hierarchical model. Memory & Cognition, 28(7), 1191–1204.

    Article  Google Scholar 

  19. Grubert, A., Indino, M., & Krummenacher, J. (2014). From features to dimensions: Cognitive and motor development in pop-out search in children and young adults. Frontiers in Psychology, 5, Article 519. https://doi.org/10.3389/fpsyg.2014.00519

    Article  PubMed  Google Scholar 

  20. Hommel, B., Li, K. Z., & Li, S. C. (2004). Visual search across the life span. Developmental Psychology, 40(4), Article 545.

    Article  Google Scholar 

  21. Huang, L., & Pashler. H. (2005). Attention capacity and task difficulty in visual search. Cognition, 94(3), 101–111. https://doi.org/10.1016/j.cognition.2004.06.006

  22. Humphrey, D. G., & Kramer, A. F. (1997). Age differences in visual search for feature, conjunction, and triple-conjunction targets. Psychology and Aging, 12(4), 704–717. https://doi.org/10.1037/0882-7974.12.4.704

    Article  PubMed  Google Scholar 

  23. Husain, M., & Rorden, C. (2003). Non-spatially lateralized mechanisms in hemispatial neglect. Nature Reviews Neuroscience, 4(1), 26–36.

    Article  Google Scholar 

  24. Jóhannesson, Ó. I., Kristjánsson, Á., & Thornton, I. M. (2017). Are foraging patterns in humans related to working memory and inhibitory control? Japanese Psychological Research, 59, 152–166. https://doi.org/10.1111/jpr.12152

    Article  Google Scholar 

  25. Jóhannesson, O. I., Thornton, I. M., Smith, I. J., Chetverikov, A., & Kristjánsson, A. (2016). Visual foraging with fingers and eye gaze. i-Perception, 7(2), Article 2041669516637279.

    Article  Google Scholar 

  26. Kail, R. (1991). Developmental change in speed of processing during childhood and adolescence. Psychological Bulletin, 109, 490–501.

    Article  Google Scholar 

  27. Kristjánsson, Á. (2015). Reconsidering visual search. i-Perception, 6(6), 2041669515614670.

    Article  Google Scholar 

  28. Kristjánsson, Á., & Egeth, H. (2020). How feature integration theory integrated cognitive psychology, neurophysiology, and psychophysics. Attention, Perception, & Psychophysics, 82(1), 7–23.

    Article  Google Scholar 

  29. Kristjánsson, Á., Jóhannesson, Ó. I., & Thornton, I. M. (2014). Common attentional constraints in visual foraging. PLOS ONE, 9(6), e100752.

  30. Kristjánsson, Á., Ólafsdóttir, I. M., & Kristjánsson, T. (2019). Visual foraging tasks provide new insights into the orienting of visual attention: Methodological considerations. In S. Pollmann (Ed.), Spatial learning and attention guidance. Neuromethods, 151. https://doi.org/10.1007/7657201921

  31. Kristjánsson, T., Draschkow, D., Pálsson, Á., Haraldsson, D., Jónsson, P. Ö., & Kristjánsson, Á. (2020). Moving foraging into 3D: Feature versus conjunction-based foraging in virtual reality. Quarterly Journal of Experimental Psychology. https://doi.org/10.1177/1747021820937020

  32. Kristjánsson, T., Thornton, I. M., Chetverikov, A., & Kristjánsson, Á. (2020). Dynamics of visual attention revealed in foraging tasks. Cognition, 194, Article 104032.

    Article  Google Scholar 

  33. Kristjánsson, T., Thornton, I. M., & Kristjánsson, Á. (2018). Time limits during visual foraging reveal flexible working memory templates. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 827–835. https://doi.org/10.1037/xhp0000517

    Article  PubMed  Google Scholar 

  34. Lobaugh, N. J., Cole, S., & Rovet, J. F. (1998). Visual search for features and conjunctions in development. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 52(4), 201–212. https://doi.org/10.1037/h0087293

    Article  PubMed  Google Scholar 

  35. Lowery, N., Ragland, J. D., Gur, R. C., Gur, R. E., & Moberg, P. J. (2004). Normative data for the symbol cancellation test in young healthy adults. Applied Neuropsychology, 11(4), 218–221.

    Article  Google Scholar 

  36. MacGregor, J. N., & Ormerod, T. C. (1996). Human performance on the traveling salesman problem. Perception & Psychophysics, 58, 527–539.

    Article  Google Scholar 

  37. MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (1999). Spatial and contextual factors in human performance on the travelling salesperson problem. Perception, 28(11), 1417–1427.

    Article  Google Scholar 

  38. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672. https://doi.org/10.3758/BF03209351

  39. Maljkovic, V. & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58(7), 977-991. https://doi.org/10.3758/bf03206826

    Article  Google Scholar 

  40. Mark, V. W., Woods, A. J., Ball, K. K., Roth, D. L., & Mennemeier, M. (2004). Disorganized search on cancellation is not a consequence of neglect. Neurology, 63(1), 78–84.

    Article  Google Scholar 

  41. Merrill, E. C., & Lookadoo, R. (2004). Selective search for conjunctively defined targets by children and young adults. Journal of Experimental Child Psychology, 89, 72–90.

    Article  Google Scholar 

  42. Najemnik, J., & Geisler, W. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387–391. https://doi.org/10.1038/nature03390

    Article  PubMed  Google Scholar 

  43. Nijboer, T. C. W., Kollen, B. J., & Kwakkel, G. (2013). Time course of visuospatial neglect early after stroke: A longitudinal cohort study. Cortex, 49(8), 2021–2027

    Article  Google Scholar 

  44. Ólafsdóttir, I. M., Gestsdóttir, S., & Kristjánsson, Á. (2019). Visual foraging and executive functions: A developmental perspective. Acta Psychologica, 193, 203-213.

    Article  Google Scholar 

  45. Ólafsdóttir, I. M., Gestsdóttir, S., & Kristjánsson, Á. (2020). Age differences in foraging and executive functions: A cross-sectional study. Journal of Experimental Child Psychology, 198, Article 104910. https://doi.org/10.1016/j.jecp.2020.104910

    Article  PubMed  Google Scholar 

  46. Ólafsdóttir, I. M., Kristjánsson, T., Gestsdóttir, S., Jóhannesson, Ó. I., & Kristjánsson, Á. (2016). Understanding visual attention in childhood: Insights from a new visual foraging task. Cognitive Research: Principles and Implications, 1(1), 18.

    Google Scholar 

  47. Pashler, H. (1987). Target-distractor discriminability in visual search. Perception & Psychophysics, 41, 285–292. https://doi.org/10.3758/BF03208228

    Article  Google Scholar 

  48. Pelegrina, S., Molina, R., Rodríguez-Martínez, E. I., Linares, R., Gómez, C. M. (2020) Age-related changes in selection, recognition, updating and maintenance information in WM. An ERP study in children and adolescents. Biological Psychology, 157, Article 107977. https://doi.org/10.1016/j.biopsycho.2020.107977

    Article  PubMed  Google Scholar 

  49. Perron, L. & Furnon, V. (2019). OR-Tools 7.2 [Computer software]. https://developers.google.com/optimization/.

  50. Quirós-Godoy, M., Pérez-Hernández, E., Cain, M., Wolfe, J., & Gil-Gómez de Liaño, B. (2018). Individual differences in visual search and foraging in children. Journal of Vision, 18(10), Article 637.

    Article  Google Scholar 

  51. Rojas-Benjumea, M. Á., Quintero-Gallego, E. A., Zozaya, L., Barriga-Paulino, C. I., & Gómez, C. M. (2013). Children cautious strategy and variable maturation time window for responding in a visual search task. Psychology, 4(1), 19–32.

    Article  Google Scholar 

  52. Sævarsson, S., Jóelsdóttir, S., Hjaltason, H., & Kristjánsson, A. (2008). Repetition of distractor sets improves visual search performance in hemispatial neglect. Neuropsychologia, 46(4), 1161–1169.

    Article  Google Scholar 

  53. Saykin, A. J., Gur, R. C., Gur, R. E., Shtasel, D. L., Flannery, K. A., Mozley, L. H., . . . Mozley, P. D. (1995). Normative neuropsychological test performance: Effects of age, education, gender, and ethnicity. Applied Neuropsychology, 2, 79–88.

  54. Scialfa, C. T. & Joffe, K. M. (1998). Response times and eye movements in feature and conjunction search as a function of target eccentricity. Perception & Psychophysics, 60, 1067–1082. https://doi.org/10.3758/BF03211940

    Article  Google Scholar 

  55. Sireteanu, R., & Rieth, C. (1992). Texture segregation in infants and children. Behavioral Brain Research, 49, 133–139.

    Article  Google Scholar 

  56. Ten Brink, A. F., Visser-Meily, J. M., & Nijboer, T. C. (2018). What does it take to search organized? the cognitive correlates of search organization during cancellation after stroke. Journal of the International Neuropsychological Society, 24, 424–36.

    Article  Google Scholar 

  57. Thompson, L. A., & Massaro, D. W. (1989). Before you see it, you see its parts: Evidence for feature encoding and integration in preschool children and adults. Cognitive Psychology, 21, 334–362.

    Article  Google Scholar 

  58. Thornton, I. M., de’Sperati, C., & Kristjánsson, Á. (2019). The influence of selection modality, display dynamics and error feedback on patterns of human foraging. Visual Cognition, 27(5/8), 626–648.

    Article  Google Scholar 

  59. Treisman, A., Sykes, M., & Gelade, G. (1977). Attention and performance IV. Erlbaum.

  60. Trick, L. M. & Enns, J. T. (1998). Lifespan changes in attention: The visual search task. Cognitive Development, 13, 369–386.

    Article  Google Scholar 

  61. Vickers, D., Bovet, P., Lee, M. D., & Hughes, P. (2003). The perception of minimal structures: Performance on open and closed versions of visually presented Euclidean travelling salesperson problems. Perception, 32(7), 871–886.

    Article  Google Scholar 

  62. Warren, M., Moore, J. M., & Vogtle, L. K. (2008). Search performance of healthy adults on cancellation tests. American Journal of Occupational Therapy, 62(5), 588–594.

    Article  Google Scholar 

  63. Wiener, J. M., Ehbauer, N. N., & Mallot, H. A. (2006). Path planning and optimization in the traveling salesman problem: Nearest neighbour vs. region-based strategies. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

  64. Wolfe, J. M. (2010). Visual search. Current Biology, 20(8), 346–349.

    Article  Google Scholar 

  65. Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in human visual search. Journal of Vision, 13(3), 10–10.

    Article  Google Scholar 

  66. Wolfe, J. M., Cain, M. S., & Aizenman, A. M. (2019). Guidance and selection history in hybrid foraging visual search. Attention, Perception, & Psychophysics, 81(3), 637–653. https://doi.org/10.3758/s13414-018-01649-5

    Article  Google Scholar 

  67. Woods, A. J., Göksun, T., Chatterjee, A., Zelonis, S., Mehta, A., & Smith, S. E. (2013). The development of organized visual search. Acta Psychologica, 143(2), 191–199.

    Article  Google Scholar 

  68. Zhang, J., Gong, X., Fougnie, D., & Wolfe, J. M. (2017). How humans react to changing rewards during visual foraging. Attention, Perception, & Psychophysics, 79, 2299–2309. https://doi.org/10.3758/s13414-017-1411-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of the University of Iceland, Grant Numbers 1032397 and 1470-147-2701 and the Icelandic Research Fund, Grant Number 152427-051.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inga María Ólafsdóttir.

Additional information

Open practices statement

None of the data or materials for the experiments reported here is publicly available, due to Icelandic data protection laws regarding underaged participants. The experiment was not preregistered.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ólafsdóttir, I.M., Gestsdóttir, S. & Kristjánsson, Á. The development of foraging organization. Atten Percept Psychophys 83, 2891–2904 (2021). https://doi.org/10.3758/s13414-021-02328-8

Download citation

Keywords

  • Attention
  • Development, Visual search