Skip to main content

Voluntary attention improves performance similarly around the visual field

Abstract

Performance as a function of polar angle at isoeccentric locations across the visual field is known as a performance field (PF) and is characterized by two asymmetries: the HVA (horizontal-vertical anisotropy) and VMA (vertical meridian asymmetry). Exogenous (involuntary) spatial attention does not affect the shape of the PF, improving performance similarly across polar angle. Here we investigated whether endogenous (voluntary) spatial attention, a flexible mechanism, can attenuate these perceptual asymmetries. Twenty participants performed an orientation discrimination task while their endogenous attention was either directed to the target location or distributed across all possible locations. The effects of attention were assessed either using the same stimulus contrast across locations or equating difficulty across locations using individually titrated contrast thresholds. In both experiments, endogenous attention similarly improved performance at all locations, maintaining the canonical PF shape. Thus, despite its voluntary nature, like exogenous attention, endogenous attention cannot alleviate perceptual asymmetries at isoeccentric locations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abrams, J., Nizam, A. & Carrasco, M. (2012). Isoeccentric locations are not equivalent: The extent of the vertical meridian asymmetry. Vision Research, 52(1), 70–78. https://doi.org/10.1016/j.visres.2011.10.016

    Article  PubMed  Google Scholar 

  2. Altpeter, E., Mackeben, M. & Trauzettel-Klosinski, S. (2000). The importance of sustained attention for patients with maculopathies. Vision Research, 40(10-12), 1539–1547. https://doi.org/10.1016/s0042-6989(00)00059-6

    Article  PubMed  Google Scholar 

  3. Baldwin, A. S., Meese, T. S., & Baker, D. H. (2012). The attenuation surface for contrast sensitivity has the form of a witch’s hat within the central visual field. Journal of Vision, 12(23) https://doi.org/10.1167/12.11.23

  4. Barbot, A. & Carrasco, M. (2017). Attention modifies spatial resolution according to task demands. Psychological Science, 28(3), 285–296. https://doi.org/10.1177/0956797616679634

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barbot, A., Landy, M. S. & Carrasco, M. (2012). Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity. Journal of Vision, 12(8), 6–6. https://doi.org/10.1167/12.8.6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barbot, A., Xue, S., & Carrasco, M. (2021). Spatial frequency asymmetries around the visual field. Journal of Vision. 21(1):2, 1–23.

    Google Scholar 

  7. Beck, D. M. & Kastner, S. (2009). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49(10), 1154–1165. https://doi.org/10.1016/j.visres.2008.07.012

    Article  PubMed  Google Scholar 

  8. Benson, N. C., Kupers, E. R., Barbot, A., Carrasco, M., & Winawer, J. (2020). Cortical magnification in human visual cortex parallels task performance around the visual field. bioRxiv. https://doi.org/10.1101/2020.08.26.268383

  9. Cameron E. L., Tai J. C. & Carrasco M. (2002). Covert attention affects the psychometric function of contrast sensitivity. Vision Research, 42: 949–967. https://doi.org/10.1016/S0042-6989(02)00039-1

    Article  PubMed  Google Scholar 

  10. Carrasco, M. (2006). Covert attention increases contrast sensitivity: Psychophysical, neurophysiological and neuroimaging studies. In: Progress in Brain Research (Vol. 154, pp. 33–70). Elsevier, https://doi.org/10.1016/S0079-6123(06)54003-8.

  11. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carrasco, M. (2014). Spatial covert attention: Perceptual modulation. The Oxford Handbook of Attention, 183–230. https://doi.org/10.1093/oxfordhb/9780199675111.013.004

  13. Carrasco, M. & Barbot, A. (2015). How attention affects spatial resolution. Cold Spring Harbor Symposia on Quantitative Biology, 79, 149–160, https://doi.org/10.1101/sqb.2014.79.024687.

    Article  PubMed Central  Google Scholar 

  14. Carrasco, M. & Barbot, A. (2019). Spatial attention alters visual appearance. Current Opinion in Psychology, 29, 56–64. https://doi.org/10.1016/j.copsyc.2018.10.010

    Article  PubMed  Google Scholar 

  15. Carrasco, M. & Frieder K. S. (1997). Cortical magnification neutralizes the eccentricity effect in visual search. Vision Research, 37(1), 63–82. https://doi.org/10.1016/S0042-6989(96)00102-2

    Article  PubMed  Google Scholar 

  16. Carrasco, M., Giordano, A. M., & McElree, B. (2004). Temporal performance fields: Visual and attentional factors. Vision Research, 44(12), 1351–1365. https://doi.org/10.1016/j.visres.2003.11.026

    Article  PubMed  Google Scholar 

  17. Carrasco, M., McElree, B., Denisova, K. & Giordano, A. M. (2003). Speed of visual processing increases with eccentricity. Nature Neuroscience, 6(7), 699–700. https://doi.org/10.1038/nn1079

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carrasco, M., Talgar C. P. & Cameron E. L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spatial Vision, 15(1), 61–75. https://doi.org/10.1163/15685680152692015

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carrasco, M., Williams, P. E. & Yeshurun, Y. (2002). Covert attention increases spatial resolution with or without masks: Support for signal enhancement. Journal of Vision, 2(6), 1351–1365. https://doi.org/10.1167/2.6.4

    Article  Google Scholar 

  20. Chun, M. M., & Nakayama, K. (2000). On the functional role of implicit visual memory for the adaptive deployment of attention across scenes. Visual Cognition, 7(1–3), 65–81. https://doi.org/10.1080/135062800394685

  21. Corbett, J. E. & Carrasco, M. (2011). Visual performance fields: Frames of reference. PLoS One, 6(9). https://doi.org/10.1371/journal.pone.0024470

  22. Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755

    Article  PubMed  Google Scholar 

  23. Curcio, C. A. & Allen, K. A. (1990). Topography of ganglion cells in human retina. The Journal of Comparative Neurology, 300(1), 5–25. https://doi.org/10.1002/cne.903000103

    Article  PubMed  Google Scholar 

  24. Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. (1990). Human photoreceptor topography. The Journal of Comparative Neurology, 292(4), 497–523. https://doi.org/10.1002/cne.902920402

    Article  PubMed  Google Scholar 

  25. Curcio, C. A., Sloan, K. R., Packer, O., Hendrickson, A. E. & Kalina, R. E. (1987). Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science, 236(4801), 579–582. https://doi.org/10.1126/science.3576186

    Article  PubMed  Google Scholar 

  26. Dugué, L., Merriam, E. P., Heeger, D. J. & Carrasco, M. (2017). Specific visual subregions of TPJ mediate reorienting of spatial attention. Cerebral Cortex, 28(7), 2375–2390. https://doi.org/10.1093/cercor/bhx140

    Article  PubMed Central  Google Scholar 

  27. Dugué, L., Merriam, E. P., Heeger, D. J. & Carrasco, M. (2020). Differential impact of endogenous and exogenous activity in human visual cortex. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-78172-x

    Article  Google Scholar 

  28. Fortenbaugh, F. C., Silver, M. A., & Robertson, L. C. (2015). Individual differences in visual field shape modulate the effects of attention on the lower visual field advantage in crowding. Journal of Vision, 15(2), 19–19. https://doi.org/10.1167/15.2.19

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fuller, S., & Carrasco, M. (2009). Perceptual consequences of visual performance fields: The case of the line motion illusion. Journal of Vision, 9(13), 1–17. https://doi.org/10.1167/9.4.13

    Article  PubMed  Google Scholar 

  30. Fuller, S., Rodriguez, R. Z. & Carrasco, M. (2008). Apparent contrast differs across the vertical meridian: Visual and attentional factors. Journal of Vision, 8(1), 16 https://doi.org/10.1167/8.1.16

    Article  PubMed  Google Scholar 

  31. Giordano, A. M., McElree, B. & Carrasco, M. (2009). On the automaticity and flexibility of covert attention: A speed-accuracy trade-off analysis. Journal of Vision, 9(3), 30–30. https://doi.org/10.1167/9.3.30

    Article  PubMed  Google Scholar 

  32. Greenwood, J. A., Szinte, M., Sayim, B., & Cavanagh, P. (2017). Variations in crowding, saccadic precision, and spatial localization reveal the shared topology of spatial vision. Proceedings of the National Academy of Sciences, 114(17), E3573–E3582. https://doi.org/10.1073/pnas.1615504114

    Article  Google Scholar 

  33. Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d. Behavior Research Methods, Instruments, & Computers, 27(1), 46–51. https://doi.org/10.3758/BF03203619

    Article  Google Scholar 

  34. Hein, E., Rolke, B., & Ulrich, R. (2006). Visual attention and temporal discrimination: Differential effects of automatic and voluntary cueing. Visual Cognition, 13(1), 29–50. https://doi.org/10.1080/13506280500143524

    Article  Google Scholar 

  35. Herrmann, K., Montaser-Kouhsari, L., Carrasco, M. & Heeger, D. J. (2010). When size matters: attention affects performance by contrast or response gain. Nature Neuroscience, 13(12), 1554–1559. https://doi.org/10.1038/nn.2669

    Article  PubMed  PubMed Central  Google Scholar 

  36. Himmelberg, M., Winawer, J. & Carrasco, M. (2020). Stimulus-dependent contrast sensitivity asymmetries around the visual field. Journal of Vision, 20(9), 18. https://doi.org/10.1167/jov.20.9.18

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jigo, M. & Carrasco, M. (2018). Attention alters spatial resolution by modulating second-order processing. Journal of Vision, 18(7), 2–2. https://doi.org/10.1167/18.7.2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jigo, M. & Carrasco, M. (2020). Differential impact of exogenous and endogenous attention on the contrast sensitivity function across eccentricity. Journal of Vision, 20(6), 11–11. https://doi.org/10.1167/jov.20.6.11

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kinchla, R. A. (1980). The measurement of attention. Attention and Performance VIII, 213–238.

  40. Kupers, E. R., Carrasco, M. & Winawer, J. (2019). Modeling visual performance differences 'around' the visual field: A computational observer approach. PLOS Computational Biology. https://doi.org/10.1371/journal.pcbi.1007063

  41. Kupers, E. R., Benson, N.C., Carrasco, M. & Winawer, J. (2020). Radial asymmetries around the visual field: From retina to cortex to behavior. biorXiv. https://doi.org/10.1101/2020.10.20.347492

  42. Levine, M. W. & McAnany, J. J. (2005). The relative capabilities of the upper and lower visual hemifields. Vision Research, 45(21), 2820–2830. https://doi.org/10.1016/j.visres.2005.04.001

    Article  PubMed  Google Scholar 

  43. Ling, S. & Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Research, 46, 1210–1220. https://doi.org/10.1016/j.visres.2005.05.008

    Article  PubMed  Google Scholar 

  44. Liu, T., Heeger, D. J. & Carrasco, M. (2006). Neural correlates of the visual vertical meridian asymmetry. Journal of Vision, 6(11), 12–12. https://doi.org/10.1167/6.11.12

    Article  Google Scholar 

  45. Liu, T., Stevens, S. T. & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47(1), 108–113. https://doi.org/10.1016/j.visres.2006.09.017

    Article  PubMed  Google Scholar 

  46. Mackeben, M. (1999). Sustained focal attention and peripheral letter recognition. Spatial Vision, 12(1), 51–72. https://doi.org/10.1163/156856899X00030

    Article  PubMed  Google Scholar 

  47. Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690. https://doi.org/10.3758/s13428-010-0049-5

    Article  PubMed  Google Scholar 

  48. Montaser-Kouhsari, L. & Carrasco, M. (2009). Perceptual asymmetries are preserved in short-term memory tasks. Attention, Perception, & Psychophysics, 71(8), 1782–1792. https://doi.org/10.3758/APP.71.8.1782

    Article  Google Scholar 

  49. Müller, H. J. & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 315. https://doi.org/10.1037/0096-1523.15.2.315

    Article  PubMed  Google Scholar 

  50. Nazir, T. A. (1992). Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision. Vision Research, 32(4), 771–777. https://doi.org/10.1016/0042-6989(92)90192-l

    Article  PubMed  Google Scholar 

  51. Pachella, R. G. (1974). The interpretation of reaction time in information processing research. In: Kantowitz BH, editor.(Ed.), Human information processing: Tutorials in performance and cognition (pp. 41–82).

  52. Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. Journal of the Optical Society of America, A, Optics, Image & Science, 2(9), 1508–1532. https://doi.org/10.1364/JOSAA.2.001508.

    Article  Google Scholar 

  53. Perry, V. H. & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors. Vision Research, 25(12), 1795–1810. https://doi.org/10.1016/0042-6989(85)90004-5

    Article  PubMed  Google Scholar 

  54. Pestilli, F., Ling, S. & Carrasco, M. (2009). A population-coding model of attention’s influence on contrast response: Estimating neural effects from psychophysical data. Vision Research, 49(10), 1144–1153. https://doi.org/10.1016/j.visres.2008.09.018

    Article  PubMed  Google Scholar 

  55. Petrov, Y. & Meleshkevich, O. (2011). Asymmetries and idiosyncratic hotspots in crowding. Vision Research, 51(10), 1117–1123. https://doi.org/10.1016/j.visres.2011.03.001

    Article  PubMed  Google Scholar 

  56. Pointer, J. S. & Hess, R. F. (1989). The contrast sensitivity gradient across the human visual field: With emphasis on the low spatial frequency range. Vision Research, 29(9), 1133–1151. https://doi.org/10.1016/0042-6989(89)90061-8

    Article  PubMed  Google Scholar 

  57. Regan, D., & Beverley, K. I. (1983). Visual fields described by contrast sensitivity, by acuity, and by relative sensitivity to different orientations. Investigative Ophthalmology and Visual Science, 24(6), 753–759.

    Google Scholar 

  58. Rijsdijk, J. P., Kroon, J. N., & van der Wildt, G. J. (1980). Contrast sensitivity as a function of position on the retina. Vision Research, 20(3), 235–241.

    Article  Google Scholar 

  59. Roberts, M., Ashinoff, B. K., Castellanos, F. X. & Carrasco, M. (2018). When attention is intact in adults with ADHD. Psychonomic Bulletin & Review, 25(4), 1423–1434. https://doi.org/10.3758/s13423-017-1407-4

    Article  Google Scholar 

  60. Roberts, M., Cymerman, R., Smith, R. T., Kiorpes, L. & Carrasco, M. (2016). Covert spatial attention is functionally intact in amblyopic human adults. Journal of Vision, 16(15), 30–30. https://doi.org/10.1167/16.15.30.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Robson, J. G. & Graham, N. (1981). Probability summation and regional variation in contrast sensitivity across the visual field. Vision Research, 21(3), 409–418. https://doi.org/10.1016/0042-6989(81)90169-3

    Article  PubMed  Google Scholar 

  62. Rovamo, J. & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research, 37(3), 495–510.

    Article  Google Scholar 

  63. Sharp, P., Melcher, D. & Hickey, C. (2018). Endogenous attention modulates the temporal window of integration. Attention, Perception, & Psychophysics, 80(5), 1214–1228. https://doi.org/10.3758/s13414-018-1506-y

    Article  Google Scholar 

  64. Sperling, G. & Melchner, M. J. (1978). The attention operating characteristic: Examples from visual search. Science, 202(4365), 315–318. https://doi.org/10.1126/science.694536

    Article  PubMed  Google Scholar 

  65. Talgar, C. P., & Carrasco, M. (2002). Vertical meridian asymmetry in spatial resolution: Visual and attentional factors. Psychonomic Bulletin & Review, 9(4), 714–722. https://doi.org/10.3758/BF03196326

    Article  Google Scholar 

  66. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121. https://doi.org/10.1037/0096-1523.16.1.121.

    Article  PubMed  Google Scholar 

  67. Yashar, A., & Lamy, D. (2010). Intertrial repetition facilitates selection in time: Common mechanisms underlie spatial and temporal search. Psychological Science, 21(2), 243–251. https://doi.org/10.1177/0956797609357928

    Article  PubMed  Google Scholar 

  68. Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–75. https://doi.org/10.1038/23936

    Article  PubMed  Google Scholar 

  69. Yeshurun, Y. & Levy, L. (2003). Transient spatial attention degrades temporal resolution. Psychological Science, 14(3), 225–231. https://doi.org/10.1111/1467-9280.02436

    Article  PubMed  Google Scholar 

  70. Yeshurun, Y., Montagna, B. & Carrasco, M. (2008). On the flexibility of sustained attention and its effects on a texture segmentation task. Vision Research, 48(1), 80–95 https://doi.org/10.1016/j.visres.2007.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wallis, T. S. & Bex, P. J. (2012). Image correlates of crowding in natural scenes. Journal of Vision, 12(7). https://doi.org/10.1167/12.7.6

  72. White, A. L., Rolfs, M., & Carrasco, M. (2013). Adaptive deployment of spatial and feature-based attention before saccades. Vision Research, 85, 26–35. https://doi.org/10.1016/j.visres.2012.10.017

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH-National Eye Institute RO1-EY027401. We thank Antoine Barbot, Marc Himmelberg, and Michael Jigo, as well as other Carrasco Lab members for useful comments.

Author information

Affiliations

Authors

Contributions

M.C. conceived the original idea of the study and got the funding. All authors planned the experiments. S.P. and M.R. programmed the experiment and the analysis. S.P. performed the experiments and analyses. All authors wrote the manuscript.

Corresponding author

Correspondence to Marisa Carrasco.

Additional information

Open Practices Statement

The data and code for all experiments will be made available upon reasonable request via a publicly accessible online system. None of the experiments were preregistered.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Purokayastha, S., Roberts, M. & Carrasco, M. Voluntary attention improves performance similarly around the visual field. Atten Percept Psychophys 83, 2784–2794 (2021). https://doi.org/10.3758/s13414-021-02316-y

Download citation

Keywords

  • Endogenous attention
  • Visual performance fields
  • Vertical meridian asymmetry
  • Horizontal-vertical anisotropy
  • Spatial vision
  • Contrast sensitivity