Variance-dependent neural activity in an unvoluntary averaging task

Abstract

Ensemble statistics of a visual scene can be estimated to provide a gist of the scene without detailed analysis of all individual items. The simplest and most widely studied ensemble statistic is mean estimation, which requires averaging an ensemble of elements. Averaging is useful to estimate the mean of an ensemble and discard the variance. The source of variance can be external (i.e., variance across the physical elements) or internal (i.e., imprecisions in the estimates of the elements by the visual system). The equivalent noise paradigm is often used to measure the impact of the internal variance (i.e., the equivalent input noise). This paradigm relies on the assumption that the averaging process is equally effective independently of the main source of variance, internal or external, so any difference between the processing when the main source of variance is internal or external must be assumed not to affect the averaging efficiency. The current fMRI study compared the neural activity when the main variance is caused by the stimulus (i.e., high variance) and when it is caused by imprecisions in the estimates of the elements by the visual system (i.e., low variance). The results showed that the right superior frontal and left middle frontal gyri can be significantly more activated when the variance in the orientation of the Gabors was high than when it was low. Consequently, the use of the equivalent noise paradigm requires the assumption that such additional neural activity in high variance does not affect the averaging efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allard, R., & Cavanagh, P. (2011). Crowding in a detection task: external noise triggers change in processing strategy. Vision Research, 51(4), 408–416.

    Article  Google Scholar 

  2. Allard, R., & Cavanagh, P. (2012). Different processing strategies underlie voluntary averaging in low and high noise. Journal of Vision, 12(11). https://doi.org/10.1167/12.11.6

  3. Allard, R., & Faubert, J. (2013). Zero-dimensional noise is not suitable for characterizing processing properties of detection mechanisms. Journal of Vision, 13(10). https://doi.org/10.1167/13.10.25

  4. Allard, R., & Faubert, J. (2014). To characterize contrast detection, noise should be extended, not localized. Frontiers in Psychology, 5(749). https://doi.org/10.3389/fpsyg.2014.00749

  5. Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention: Research article. Psychological Science, 19(4), 392–398. https://doi.org/10.1111/j.1467-9280.2008.02098.x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7345–7350. https://doi.org/10.1073/pnas.0808981106

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andres, M., Pelgrims, B., Michaux, N., Olivier, E., & Pesenti, M. (2011). Role of distinct parietal areas in arithmetic: An fMRI-guided TMS study. NeuroImage https://doi.org/10.1016/j.neuroimage.2010.11.009

  8. Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage https://doi.org/10.1016/j.neuroimage.2010.10.009

  9. Baker, D. H., & Meese, T. S. (2012). Zero-dimensional noise: The best mask you never saw. Journal of Vision, 12(10). https://doi.org/10.1167/12.10.20

  10. Baker, D. H., & Vilidaite, G. (2014). Broadband noise masks suppress neural responses to narrowband stimuli. Frontiers in Psychology, 5(763). https://doi.org/10.3389/fpsyg.2014.00763

  11. Baldwin, A. S., Baker, D. H., & Hess, R. F. (2016). What do contrast threshold equivalent noise studies actually measure? Noise vs. nonlinearity in different masking paradigms. PLOS ONE, 11(3), 1–25. https://doi.org/10.1371/journal.pone.0150942

    Article  Google Scholar 

  12. Beaudot, W. H. A., & Mullen, K. T. (2006). Orientation discrimination in human vision: Psychophysics and modeling. Vision Research, 46(1–2), 26–46. Retrieved from http://www.sciencedirect.com/science/article/B6T0W-4HPD3JT-1/2/d729e222ab5dd9a8a454ef8eb61f074b

    Article  Google Scholar 

  13. Bocheva, N., Stefanov, S., Stefanova, M., & Genova, B. (2015). Global orientation estimation in noisy conditions. Acta Neurobiologiae Experimentalis, 75(4), 412–433.

    PubMed  Google Scholar 

  14. Bronfman, Z. Z., Brezis, N., Jacobson, H., & Usher, M. (2014). We See more than we can report: “Cost free” color phenomenality outside focal attention. Psychological Science, 25(7), 1394–1403. https://doi.org/10.1177/0956797614532656

    Article  PubMed  Google Scholar 

  15. Chong, S. C., & Treisman, A. (2005). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45(7), 891–900. https://doi.org/10.1016/j.visres.2004.10.004

    Article  PubMed  Google Scholar 

  16. Dakin, S. C. (2001). Information limit on the spatial integration of local orientation signals. Journal of the Optical Society of America A, 18(5), 1016–1026. Retrieved from http://josaa.osa.org/abstract.cfm?URI=josaa-18-5-1016

    Article  Google Scholar 

  17. Dakin, S. C. (2015). Seeing statistical regularities: Texture and pattern perception. In J. Wagemans (Ed.), The Oxford handbook of perceptual organization (pp. 150–167). https://doi.org/10.1093/oxfordhb/9780199686858.013.054

  18. Dakin, S. C., Bex, P. J., Cass, J. R., & Watt, R. J. (2009). Dissociable effects of attention and crowding on orientation averaging. Journal of Vision, 9(11), 1–16. https://doi.org/10.1167/9.11.28

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dakin, S. C., Mareschal, I., & Bex, P. J. (2005). Local and global limitations on direction integration assessed using equivalent noise analysis. Vision Research, 45(24), 3027–3049. https://doi.org/10.1016/j.visres.2005.07.037

    Article  PubMed  Google Scholar 

  20. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology. https://doi.org/10.1080/02643290244000239

  21. Fehr, T., Code, C., & Herrmann, M. (2007). Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation. Brain Research. https://doi.org/10.1016/j.brainres.2007.07.043

  22. Fischer, J., & Whitney, D. (2011). Object-level visual information gets through the bottleneck of crowding. Journal of Neurophysiology, 106(3), 1389–1398. https://doi.org/10.1152/jn.00904.2010

    Article  PubMed  PubMed Central  Google Scholar 

  23. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. -P, Frith, C. D., & Frackowiak, R. S. J. (1994). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping. https://doi.org/10.1002/hbm.460020402

  24. Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127

  25. Hallett, P. E. (1986). Eye movements. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance (pp. 10–90). New York: Wiley.

    Google Scholar 

  26. Im, H. Y., & Halberda, J. (2013). The effects of sampling and internal noise on the representation of ensemble average size. Attention, Perception, & Psychophysics, 75(2), 278–286. https://doi.org/10.3758/s13414-012-0399-4

    Article  Google Scholar 

  27. Lagrené, K., Bécu, M., Seiple, W. H., Raphanel Bataille, M., Combariza, S., Paques, M., . . . Arleo, A. (2019). Healthy and pathological visual aging in a French follow-up cohort study. Investigative Ophthalmology & Visual Science, 60, 5915.

    Google Scholar 

  28. Mansouri, B., Allen, H. A., Hess, R. F., Dakin, S. C., & Ehrt, O. (2004). Integration of orientation information in amblyopia. Vision Research, 44(25), 2955–2969. https://doi.org/10.1016/j.visres.2004.06.017

    Article  PubMed  Google Scholar 

  29. Mareschal, I., Bex, P. J., & Dakin, S. C. (2008). Local motion processing limits fine direction discrimination in the periphery. Vision Research, 48(16), 1719–1725. https://doi.org/10.1016/j.visres.2008.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4(7), 739–744. https://doi.org/10.1038/89532

    Article  PubMed  Google Scholar 

  31. Pelli, D. G. (1990). The quantum efficiency of vision. In C. Blakemore (Ed.), Visual coding and efficiency (pp. 3–24). Cambridge: Cambridge University Press.

    Google Scholar 

  32. Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179–197. https://doi.org/10.1163/156856888X00122

    Article  PubMed  Google Scholar 

  33. Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: An fMRI study. Neuropsychologia https://doi.org/10.1016/S0028-3932(99)00068-8

  34. Rosenberg-Lee, M., Chang, T. T., Young, C. B., Wu, S., & Menon, V. (2011). Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: A cytoarchitectonic mapping study. Neuropsychologia https://doi.org/10.1016/j.neuropsychologia.2011.04.035

  35. Tibber, M. S., Anderson, E. J., Bobin, T., Carlin, P., Shergill, S. S., & Dakin, S. C. (2015). Local and global limits on visual processing in schizophrenia. PLOS ONE, 10(2). https://doi.org/10.1371/journal.pone.0117951

  36. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    Article  Google Scholar 

  37. Whitney, D., & Yamanashi Leib, A. (2018). Ensemble Perception. Annual Review of Psychology, 69(1), 105–129. https://doi.org/10.1146/annurev-psych-010416-044232

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Chair SILVERSIGHT ANR-18-CHIN-0002 and by the IHU FOReSIGHT ANR-18-IAHU-01. The authors thank the participants of this study for their valuable contributions. We thank the CHNO des Quinze-Vingts for enabling us to perform the MRI acquisitions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rémy Allard.

Additional information

Open practices statement

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The experiment was not preregistered.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 614 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allard, R., Ramanoël, S., Silvestre, D. et al. Variance-dependent neural activity in an unvoluntary averaging task. Atten Percept Psychophys 83, 1094–1105 (2021). https://doi.org/10.3758/s13414-020-02223-8

Download citation

Keywords

  • Ensemble statistics
  • Averaging
  • Orientation
  • Noise
  • fMRI