Albers, D., Correll, M., & Gleicher, M. (2014). Task-driven evaluation of aggregation in time series visualization. Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI ’14, 551–560. Toronto, Ontario, Canada: ACM Press. https://doi.org/10.1145/2556288.2557200
Chapter
Google Scholar
Ali, N., & Peebles, D. (2013). The effect of gestalt laws of perceptual organization on the comprehension of three-variable bar and line graphs. Human Factors: The Journal of the Human Factors and Ergonomics Society, 55(1), 183–203. https://doi.org/10.1177/0018720812452592
Article
Google Scholar
Allik, J., Toom, M., Raidvee, A., Averin, K., & Kreegipuu, K. (2013). An almost general theory of mean size perception. Vision Research, 83, 25–39. https://doi.org/10.1016/j.visres.2013.02.018
Article
PubMed
Google Scholar
Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15(3), 122–131. https://doi.org/10.1016/j.tics.2011.01.003
Article
PubMed
Google Scholar
Anderson, N. H. (1968). Averaging of space and number stimuli with simultaneous presentation. Journal of Experimental Psychology, 77(3, Pt.1), 383–392. https://doi.org/10.1037/h0025950
Article
PubMed
Google Scholar
Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12(2), 157–162. https://doi.org/10.1111/1467-9280.00327
Article
PubMed
Google Scholar
Åstebro, T., Mata, J., & Santos-Pinto, L. (2015). Skewness seeking: Risk loving, optimism or overweighting of small probabilities? Theory and Decision, 78(2), 189–208. https://doi.org/10.1007/s11238-014-9417-4
Article
Google Scholar
Badcock, D. R., & Westheimer, G. (1985). Spatial location and hyperacuity: The centre/surround localization contribution function has two substrates. Vision Research, 25(9), 1259–1267. https://doi.org/10.1016/0042-6989(85)90041-0
Article
PubMed
Google Scholar
Baek, J., & Chong, S. C. (2020). Distributed attention model of perceptual averaging. Attention, Perception, & Psychophysics, 82(1), 63–79. https://doi.org/10.3758/s13414-019-01827-z
Article
Google Scholar
Bair, W. (2005). Visual receptive field organization. Current Opinion in Neurobiology, 15(4), 459–464. https://doi.org/10.1016/j.conb.2005.07.006
Article
PubMed
Google Scholar
Bakker, A. (2004). Reasoning about shape as pattern in variability. Statistics Education Research Journal, 3(2), 64–83.
Google Scholar
Barrowman, N. J., & Myers, R. A. (2003). Raindrop plots: A new way to display collections of likelihoods and distributions. The American Statistician, 57(4), 268–274. https://doi.org/10.1198/0003130032369
Article
Google Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–660. https://doi.org/10.1017/S0140525X99002149
Article
Google Scholar
Batanero, C., Cobo Merino, B., & Diaz, C. (2003). Assessing secondary school students’ understanding of averages. Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education, 1–9.
Bauer, B. (2017). Perceptual averaging of line length: Effects of concurrent digit memory load. Attention, Perception, & Psychophysics, 79(8), 2510–2522. https://doi.org/10.3758/s13414-017-1388-4
Article
Google Scholar
Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers Misunderstand Confidence Intervals and Standard Error Bars. Psychological Methods, 10(4), 389–396. https://doi.org/10.1037/1082-989X.10.4.389
Article
PubMed
Google Scholar
Ben-Zvi, D. (2003). Reasoning about variability in comparing distributions. Statistics Education Research Journal, 3(2), 42–63.
Google Scholar
Bertini, E., Tatu, A., & Keim, D. (2011). Quality metrics in high-dimensional data visualization: An overview and systematization. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2203–2212. https://doi.org/10.1109/TVCG.2011.229
Article
PubMed
Google Scholar
Biehler, R. (1997). Software for Learning and for Doing Statistics. International Statistical Review, 65(2), 167–189. https://doi.org/10.1111/j.1751-5823.1997.tb00399.x
Article
Google Scholar
Brannon, E. M., & Merritt, D. J. (2011). Evolutionary foundations of the approximate number system. In S. Dehaene & E. M. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 207–224). Elsevier. https://doi.org/10.1016/B978-0-12-385948-8.00014-1
Broad, K., Leiserowitz, A., Weinkle, J., & Steketee, M. (2007). Misinterpretations of the “cone of uncertainty” in Florida during the 2004 hurricane season. Bulletin of the American Meteorological Society, 88(5), 651–668. https://doi.org/10.1175/BAMS-88-5-651
Article
Google Scholar
Bronfman, Z. Z., Brezis, N., Jacobson, H., & Usher, M. (2014). We see more than we can report: “cost free” color phenomenality outside focal attention. Psychological Science, 25(7), 1394–1403. https://doi.org/10.1177/0956797614532656
Article
PubMed
Google Scholar
Cai, J., & Moyer, J. (1995). Beyond the computational algorithm: Students’ understanding of the arithmetic average concept. 3, 144–151. Recife, Brazil: Universidade Federal de Pernambuco.
Carswell, C. M. (1992). Choosing Specifiers: An Evaluation of the Basic Tasks Model of Graphical Perception. Human Factors: The Journal of the Human Factors and Ergonomics Society, 34(5), 535–554. https://doi.org/10.1177/001872089203400503
Article
Google Scholar
Castro Sotos, A. E., Vanhoof, S., Van den Noortgate, W., & Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 2(2), 98–113. https://doi.org/10.1016/j.edurev.2007.04.001
Article
Google Scholar
Chan, S. W., & Ismail, Z. (2013). Assessing Misconceptions in Reasoning About Variability Among High School Students. Procedia - Social and Behavioral Sciences, 93, 1478–1483. https://doi.org/10.1016/j.sbspro.2013.10.067
Article
Google Scholar
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196–210. https://doi.org/10.1016/j.cognition.2016.04.018
Article
PubMed
Google Scholar
Chong, S. C., & Evans, K. K. (2011). Distributed versus focused attention (count vs estimate): Distributed versus focused attention. Wiley Interdisciplinary Reviews: Cognitive Science, 2(6), 634–638. https://doi.org/10.1002/wcs.136
Article
PubMed
Google Scholar
Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43(4), 393–404. https://doi.org/10.1016/S0042-6989(02)00596-5
Article
PubMed
Google Scholar
Chong, S. C., & Treisman, A. (2005). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45(7), 891–900. https://doi.org/10.1016/j.visres.2004.10.004
Article
PubMed
Google Scholar
Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554. https://doi.org/10.1080/01621459.1984.10478080
Article
Google Scholar
Cleveland, W. S., & McGill, R. (1986). An experiment in graphical perception. International Journal of Man-Machine Studies, 25(5), 491–500. https://doi.org/10.1016/S0020-7373(86)80019-0
Article
Google Scholar
Cochrane, A., Cui, L., Hubbard, E. M., & Green, C. S. (2019). “Approximate number system” training: A perceptual learning approach. Attention, Perception, & Psychophysics, 81(3), 621–636. https://doi.org/10.3758/s13414-018-01636-w
Article
Google Scholar
Cooper, L., & Shore, F. (2008). Students’ misconceptions in interpreting center and variability of data represented via histograms and stem-and-leaf plots. Journal of Statistics Education, 15(2), 1–13. https://doi.org/10.1080/10691898.2008.11889559
Cooper, L., & Shore, F. S. (2010). The effects of data and graph type on concepts and visualizations of variability. Journal of Statistics Education, 18(2), 1–16.
Google Scholar
Corbett, J. E., & Melcher, D. (2014). Characterizing ensemble statistics: Mean size is represented across multiple frames of reference. Attention, Perception, & Psychophysics, 76(3), 746–758. https://doi.org/10.3758/s13414-013-0595-x
Article
Google Scholar
Corbett, J. E., Wurnitsch, N., Schwartz, A., & Whitney, D. (2012). An aftereffect of adaptation to mean size. Visual Cognition, 20(2), 211–231. https://doi.org/10.1080/13506285.2012.657261
Article
Google Scholar
Correll, M., & Gleicher, M. (2014). Error bars considered harmful: Exploring alternate encodings for mean and error. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2142–2151. https://doi.org/10.1109/TVCG.2014.2346298
Article
PubMed
PubMed Central
Google Scholar
Cui, L., Massey, C. M., & Kellman, P. J. (2018). Perceptual learning in correlation estimation: The role of learning category organization. In T.T. Rogers, M. Rau, X. Zhu, & C.W. Kalish (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (pp 262–267). Madison, Cognitive Science Society.
Cumming, G. (2009). Inference by eye: Reading the overlap of independent confidence intervals. Statistics in Medicine, 28(2), 205–220. https://doi.org/10.1002/sim.3471
Article
PubMed
Google Scholar
Dakin, S. C. (2001). Information limit on the spatial integration of local orientation signals. Journal of the Optical Society of America A, 18(5), 1016. https://doi.org/10.1364/JOSAA.18.001016
Article
Google Scholar
de Fockert, J., & Wolfenstein, C. (2009). Short article: Rapid extraction of mean identity from sets of faces. Quarterly Journal of Experimental Psychology, 62(9), 1716–1722. https://doi.org/10.1080/17470210902811249
Article
Google Scholar
delMas, R., Garfield, J., & Ooms, A. (2004). Using assessment items to study students’ difficulty reading and interpreting graphical representations of distributions. Paper presented at the Proceedings of the Fourth International Research Forum on Statistical Reasoning, Literacy, and Reasoning, Auckland, New Zealand.
delMas, R., Garfield, J., Ooms, A., & Chance, B. (2007). Assessing students’ conceptual understanding after a first course in statistics. Statistics Education Research Journal, 6(2), 28–58.
Google Scholar
delMas, R., & Liu, Y. (2005). Exploring students’ conceptions of the standard deviation. Statistics Education Research Journal, 4(1), 55–82.
Google Scholar
Fischer, M. H., Dewulf, N., & Hill, R. L. (2005). Designing bar graphs: Orientation matters. Applied Cognitive Psychology, 19(7), 953–962. https://doi.org/10.1002/acp.1105
Article
Google Scholar
Fouriezos, G., Rubenfeld, S., & Capstick, G. (2008). Visual statistical decisions. Perception & Psychophysics, 70(3), 456–464. https://doi.org/10.3758/PP.70.3.456
Article
Google Scholar
Friendly, M. (2008). A brief history of data visualization. In C.-h. Chen, W. K. K. Härdle, & A. Unwin (Eds.), Handbook of computational statistics: Data visualization (Vol. 3, pp. 15–56). Heidelberg, Germany: Springer-Verlag.
Chapter
Google Scholar
Garfield, J. B., & Ben-Zvi, D. (2008). Learning to reason about variability. In Developing students’ statistical reasoning: Connecting research and teaching practice (pp. 201–214). Springer.
Gleicher, M., Correll, M., Nothelfer, C., & Franconeri, S. (2013). Perception of average value in multiclass scatterplots. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2316–2325. https://doi.org/10.1109/TVCG.2013.183
Article
PubMed
PubMed Central
Google Scholar
Godau, C., Vogelgesang, T., & Gaschler, R. (2016). Perception of bar graphs—A biased impression? Computers in Human Behavior, 59, 67–73. https://doi.org/10.1016/j.chb.2016.01.036
Article
Google Scholar
Goldenberg, A., Sweeny, T. D., Shpigel, E., & Gross, J. J. (2020). Is this my group or not? The role of ensemble coding of emotional expressions in group categorization. Journal of Experimental Psychology: General, 149(3), 445–460. https://doi.org/10.1037/xge0000651
Article
Google Scholar
Griffiths, S., Rhodes, G., Jeffery, L., Palermo, R., & Neumann, M. F. (2018). The average facial expression of a crowd influences impressions of individual expressions. Journal of Experimental Psychology: Human Perception and Performance, 44(2), 311–319. https://doi.org/10.1037/xhp0000446
Article
PubMed
Google Scholar
Haberman, J., Lee, P., & Whitney, D. (2015). Mixed emotions: Sensitivity to facial variance in a crowd of faces. Journal of Vision, 15(4), 16. https://doi.org/10.1167/15.4.16
Article
PubMed
Google Scholar
Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17(17), R751–R753. https://doi.org/10.1016/j.cub.2007.06.039
Article
PubMed
Google Scholar
Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 718–734. https://doi.org/10.1037/a0013899
Article
PubMed
Google Scholar
Haberman, J., & Whitney, D. (2010). The visual system discounts emotional deviants when extracting average expression. Attention, Perception & Psychophysics, 72(7), 1825–1838. https://doi.org/10.3758/APP.72.7.1825
Article
Google Scholar
Hancock, S. A., & Rummerfield, W. (2020). Simulation methods for teaching sampling distributions: Should hands-on activities precede the computer? Journal of Statistics Education, 28(1), 9–17. https://doi.org/10.1080/10691898.2020.1720551
Article
Google Scholar
Heer, J., & Bostock, M. (2010). Crowdsourcing graphical perception: Using Mechanical Turk to assess visualization design. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 203–212). Atlanta, GA: Association for Computing Machinery. https://doi.org/10.1145/1753326.1753357
Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10(4), 389–395. https://doi.org/10.3758/BF03202431
Article
Google Scholar
Hofman, J. M., Goldstein, D. G., & Hullman, J. (2020). How visualizing inferential uncertainty can mislead readers about treatment effects in scientific results. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–12). Honolulu, HI: ACM. https://doi.org/10.1145/3313831.3376454
Hsu, C. T., & Lawley, D. N. (1940). The derivation of the fifth and sixth moments of the distribution of b 2 in samples from a normal population. Biometrika, 31(3/4), 238. https://doi.org/10.2307/2332606
Article
Google Scholar
Hubert-Wallander, B., & Boynton, G. M. (2015). Not all summary statistics are made equal: Evidence from extracting summaries across time. Journal of Vision, 15(4), 5. https://doi.org/10.1167/15.4.5
Article
PubMed
PubMed Central
Google Scholar
Huck, S. W. (2009). Statistical Misconception. London, UK: Psychology Press.
Google Scholar
Huestegge, L., & Pötzsch, T. H. (2018). Integration processes during frequency graph comprehension: Performance and eye movements while processing tree maps versus pie charts. Applied Cognitive Psychology, 32(2), 200–216. https://doi.org/10.1002/acp.3396
Article
Google Scholar
Hullman, J., Resnick, P., & Adar, E. (2015). Hypothetical outcome plots outperform error bars and violin plots for inferences about reliability of variable ordering. PLOS ONE, 10(11), e0142444. https://doi.org/10.1371/journal.pone.0142444
Article
PubMed
PubMed Central
Google Scholar
Ibrekk, H., & Morgan, M. G. (1987). Graphical communication of uncertain quantities to nontechnical people. Risk Analysis, 7(4), 519–529. https://doi.org/10.1111/j.1539-6924.1987.tb00488.x
Article
Google Scholar
Im, H. Y., & Halberda, J. (2013). The effects of sampling and internal noise on the representation of ensemble average size. Attention, Perception, & Psychophysics, 75(2), 278–286. https://doi.org/10.3758/s13414-012-0399-4
Article
Google Scholar
Inzunza, S. (2006). Students’ errors and difficulties for solving problems of sampling distributions by means of computer simulation. Paper presented at the 7th Annual International Conference on Teaching Statistics.
Ismail, Z., & Chan, S. W. (2015). Malaysian students’ misconceptions about measures of central tendency: An error analysis (pp. 93–100). Pahang, Malaysia. https://doi.org/10.1063/1.4907430
Jamie, D. M. (2002). Using computer simulation methods to teach statistics: A review of the literature. Journal of Statistics Education, 10(1), 4. https://doi.org/10.1080/10691898.2002.11910548
Article
Google Scholar
Jardine, N., Ondov, B. D., Elmqvist, N., & Franconeri, S. (2020). The Perceptual Proxies of Visual Comparison. IEEE Transactions on Visualization and Computer Graphics, 26(1), 1012–1021. https://doi.org/10.1109/TVCG.2019.2934786
Article
PubMed
Google Scholar
Jarvenpaa, S. L., & Dickson, G. W. (1988). Graphics and managerial decision making: Research-based guidelines. Communications of the ACM, 31(6), 764–774. https://doi.org/10.1145/62959.62971
Article
Google Scholar
Jeong, J., & Chong, S. C. (2020). Adaptation to mean and variance: Interrelationships between mean and variance representations in orientation perception. Vision Research, 167, 46–53. https://doi.org/10.1016/j.visres.2020.01.002
Article
PubMed
Google Scholar
Ji, L., & Pourtois, G. (2018). Capacity limitations to extract the mean emotion from multiple facial expressions depend on emotion variance. Vision Research, 145, 39–48. https://doi.org/10.1016/j.visres.2018.03.007
Article
PubMed
Google Scholar
Joslyn, S., & LeClerc, J. (2013). Decisions with uncertainty: The glass half full. Current Directions in Psychological Science, 22(4), 308–315. https://doi.org/10.1177/0963721413481473
Article
Google Scholar
Kahneman, D. (2011). Thinking fast and slow. New York, NY: Farrar, Straus & Giroux.
Google Scholar
Kampstra, P. (2008). Beanplot: A boxplot alternative for visual comparison of distributions. Journal of Statistical Software, 28(Code Snippet 1). https://doi.org/10.18637/jss.v028.c01
Kaplan, J. J., Gabrosek, J. G., Curtiss, P., & Malone, C. (2014). Investigating student understanding of histograms. Journal of Statistics Education, 22(2), 1–30.
Google Scholar
Katzin, N., Cohen, Z. Z., & Henik, A. (2019). If it looks, sounds, or feels like subitizing, is it subitizing? A modulated definition of subitizing. Psychonomic Bulletin & Review, 26(3), 790–797. https://doi.org/10.3758/s13423-018-1556-0
Article
Google Scholar
Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is my bus?: User-centered visualizations of uncertainty in everyday, mobile predictive systems. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 5092–5103). San Jose, CA: ACM. https://doi.org/10.1145/2858036.2858558
Khayat, N., & Hochstein, S. (2018). Perceiving set mean and range: Automaticity and precision. Journal of Vision, 18(9), 23. https://doi.org/10.1167/18.9.23
Article
PubMed
Google Scholar
Khvostov, V. A., & Utochkin, I. S. (2019). Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks. Journal of Vision, 19(9), 3. https://doi.org/10.1167/19.9.3
Article
PubMed
Google Scholar
Kong, N., Heer, J., & Agrawala, M. (2010). Perceptual guidelines for creating rectangular treemaps. IEEE Transactions on Visualization and Computer Graphics, 16(6), 990–998. https://doi.org/10.1109/TVCG.2010.186
Article
PubMed
Google Scholar
Kosara, R. (2019). Circular part-to-whole charts using the area visual cue. Proceedings of the Eurographics/IEEE VGTC Symposium on Visualization (EuroVis), 13–17. https://doi.org/10.2312/EVS.20191163
Kosslyn, S. M. (2006). Graph Design for the Eye and Mind. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195311846.001.0001
Kraus, A., & Litzenberger, R. H. (1976). Skewness preference and the valuation of risk assets*. The Journal of Finance, 31(4), 1085–1100. https://doi.org/10.1111/j.1540-6261.1976.tb01961.x
Article
Google Scholar
Landy, D., Silbert, N., & Goldin, A. (2013). Estimating large numbers. Cognitive Science, 37(5), 775–799. https://doi.org/10.1111/cogs.12028
Article
PubMed
Google Scholar
Lane, D. M. (2015). Simulations of the sampling distribution of the mean do not necessarily mislead and can facilitate learning. Journal of Statistics Education, 23(2), 6. https://doi.org/10.1080/10691898.2015.11889738
Article
Google Scholar
Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological Science, 1(2), 115–121. https://doi.org/10.1111/j.1467-9280.1990.tb00079.x
Article
Google Scholar
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100. https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
Article
Google Scholar
Lau, J. S.-H., & Brady, T. F. (2018). Ensemble statistics accessed through proxies: Range heuristic and dependence on low-level properties in variability discrimination. Journal of Vision, 18(9), 3. https://doi.org/10.1167/18.9.3
Article
PubMed
PubMed Central
Google Scholar
Lavigne, N. C., Salkind, S. J., & Yan, J. (2008). Exploring college students’ mental representations of inferential statistics. The Journal of Mathematical Behavior, 27(1), 11–32. https://doi.org/10.1016/j.jmathb.2007.10.003
Article
Google Scholar
Lee, C., & Meletiou-Mavrotheris, M. (2003). Some difficulties of learning histograms in introductory statistics. Proceedings of the 2003 Joint Statistical Meeting, Section on Statistical Education (pp. 2326–2333).
Lem, S., Onghena, P., Verschaffel, L., & Van Dooren, W. (2014). Interpreting histograms. As easy as it seems? European Journal of Psychology of Education, 29(4), 557–575. https://doi.org/10.1007/s10212-014-0213-x
Article
Google Scholar
Li, H., Ji, L., Tong, K., Ren, N., Chen, W., Liu, C. H., & Fu, X. (2016). Processing of individual items during ensemble coding of facial expressions. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01332
Liu, L., Boone, A. P., Ruginski, I. T., Padilla, L., Hegarty, M., Creem-Regehr, S. H., … House, D. H. (2017). Uncertainty visualization by representative sampling from prediction ensembles. IEEE Transactions on Visualization and Computer Graphics, 23(9), 2165–2178. https://doi.org/10.1109/TVCG.2016.2607204
Article
PubMed
Google Scholar
Liu, L., Mirzargar, M., Kirby, R. M., Whitaker, R., & House, D. H. (2015). Visualizing time-specific hurricane predictions, with uncertainty, from storm path ensembles. Computer Graphics Forum, 34(3), 371–380. https://doi.org/10.1111/cgf.12649
Article
Google Scholar
Liu, T.-C., Lin, Y.-C., & Kinshuk. (2010). The application of Simulation-Assisted Learning Statistics (SALS) for correcting misconceptions and improving understanding of correlation: Effects of SALS-based learning. Journal of Computer Assisted Learning, 26(2), 143–158. https://doi.org/10.1111/j.1365-2729.2009.00330.x
Article
Google Scholar
Luo, A. X., & Zhao, J. (2018). Capacity limit of ensemble perception of multiple spatially intermixed sets. Attention, Perception, & Psychophysics, 80(8), 2033–2047. https://doi.org/10.3758/s13414-018-1572-1
Article
Google Scholar
Makar, K., & Confrey, J. (2003). Moving the context of modeling to the forefront. In C. Lee (Ed.), Reasoning about variability: A collection of current research studies. Dordrecht, The Netherlands: Kluwer Academic Publisher.
Google Scholar
Makar, K., & Confrey, J. (2005). Using distributions as statistical evidence in well-structured and ill-structured problems. Reasoning about distribution: A collection of current research studies. Presented at the Proceedings of the Fourth International Research Forum on Statistical Reasoning, Thinking and Literacy, Brisbane, Australia.
Marchant, A. P., Simons, D. J., & de Fockert, J. W. (2013). Ensemble representations: Effects of set size and item heterogeneity on average size perception. Acta Psychologica, 142(2), 245–250. https://doi.org/10.1016/j.actpsy.2012.11.002
Article
PubMed
Google Scholar
Maule, J., & Franklin, A. (2015). Effects of ensemble complexity and perceptual similarity on rapid averaging of hue. Journal of Vision, 15(4), 6. https://doi.org/10.1167/15.4.6
Article
PubMed
Google Scholar
Maule, J., & Franklin, A. (2016). Accurate rapid averaging of multihue ensembles is due to a limited capacity subsampling mechanism. Journal of the Optical Society of America A, 33(3), A22. https://doi.org/10.1364/JOSAA.33.000A22
Article
Google Scholar
Maule, J., & Franklin, A. (2019). Adaptation to variance generalizes across visual domains. Journal of Experimental Psychology: General. https://doi.org/10.1037/xge0000678
McDowell, M., & Jacobs, P. (2017). Meta-analysis of the effect of natural frequencies on Bayesian reasoning. Psychological Bulletin, 143(12), 1273–1312. https://doi.org/10.1037/bul0000126
Article
PubMed
Google Scholar
Meletiou-Mavrotheris, M., & Lee, C. (2002). Teaching students the stochastic nature of statistical concepts in an Introductory statistics course. Statistics Education Research Journal, 1(2), 2–37.
Google Scholar
Meletiou-Mavrotheris, M., & Lee, C. (2010). Investigating college-level introductory statistics students’ prior knowledge of graphing. Canadian Journal of Science, Mathematics and Technology Education, 10(4), 339–355. https://doi.org/10.1080/14926156.2010.524964
Article
Google Scholar
Mevarech, Z. (1983). A deep structure model of students’ statistical misconceptions. Educational Studies in Mathematics, 14, 415–429.
Article
Google Scholar
Micallef, L., Palmas, G., Oulasvirta, A., & Weinkauf, T. (2017). Towards perceptual optimization of the visual design of scatterplots. IEEE Transactions on Visualization and Computer Graphics, 23(6), 1588–1599. https://doi.org/10.1109/TVCG.2017.2674978
Article
PubMed
Google Scholar
Michael, E., de Gardelle, V., & Summerfield, C. (2014). Priming by the variability of visual information. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7873–7878. https://doi.org/10.1073/pnas.1308674111
Article
PubMed
PubMed Central
Google Scholar
Morgan, M., Chubb, C., & Solomon, J. A. (2008). A “dipper” function for texture discrimination based on orientation variance. Journal of Vision, 8(11), 9–9. https://doi.org/10.1167/8.11.9
Article
PubMed
PubMed Central
Google Scholar
Myczek, K., & Simons, D. J. (2008). Better than average: Alternatives to statistical summary representations for rapid judgments of average size. Perception & Psychophysics, 70(5), 772–788. https://doi.org/10.3758/PP.70.5.772
Article
Google Scholar
Neumann, D. L., Neumann, M. M., & Hood, M. (2011). Evaluating computer-based simulations, multimedia and animations that help integrate blended learning with lectures in first year statistics. Australasian Journal of Educational Technology, 27(2). https://doi.org/10.14742/ajet.970
Newman, G. E., & Scholl, B. J. (2012). Bar graphs depicting averages are perceptually misinterpreted: The within-the-bar bias. Psychonomic Bulletin & Review, 19(4), 601–607. https://doi.org/10.3758/s13423-012-0247-5
Article
Google Scholar
Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2015). Direct encoding of orientation variance in the visual system. Journal of Vision, 15(4), 3. https://doi.org/10.1167/15.4.3
Article
PubMed
Google Scholar
Odic, D., & Starr, A. (2018). An introduction to the approximate number system. Child Development Perspectives, 12(4), 223–229. https://doi.org/10.1111/cdep.12288
Article
PubMed
PubMed Central
Google Scholar
Okan, Y., Galesic, M., & Garcia-Retamero, R. (2016). How people with low and high graph literacy process health graphs: Evidence from eye-tracking: Graph literacy and health graph processing. Journal of Behavioral Decision Making, 29(2/3), 271–294. https://doi.org/10.1002/bdm.1891
Article
Google Scholar
Olani, A., Hoekstra, R., Harskamp, E., & Van der Werf, G. (2010). Statistical reasoning ability, self-efficacy, and value beliefs in a reform based university statistics course. Electronic Journal of Research in Education Psychology, 8(22). https://doi.org/10.25115/ejrep.v9i23.1427
Oriet, C., & Hozempa, K. (2016). Incidental statistical summary representation over time. Journal of Vision, 16(3), 3. https://doi.org/10.1167/16.3.3
Article
PubMed
Google Scholar
Palmer, S. E. (2002). Perceptual organization in vision. In H. Pashler (Ed.), Stevens’ handbook of experimental psychology (p. pas0105). Hoboken, NJ: John Wiley & Sons, Inc. https://doi.org/10.1002/0471214426.pas0105
Chapter
Google Scholar
Peebles, D. (2008). The effect of emergent features on judgments of quantity in configural and separable displays. Journal of Experimental Psychology: Applied, 14(2), 85–100. https://doi.org/10.1037/1076-898X.14.2.85
Article
PubMed
Google Scholar
Peebles, D., & Ali, N. (2009). Differences in comprehensibility between three-variable bar and line graphs (pp. 2938–2943). Mahwah, NJ: Erlbaum.
Google Scholar
Pfannkuch, M., & Reading, C. (2006). Reasoning about distribution: A complex process. Statistics Education Research Journal, 5(2), 4–9.
Google Scholar
Piazza, E. A., Sweeny, T. D., Wessel, D., Silver, M. A., & Whitney, D. (2013). Humans use summary statistics to perceive auditory sequences. Psychological Science, 24(8), 1389–1397. https://doi.org/10.1177/0956797612473759
Article
PubMed
PubMed Central
Google Scholar
Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. The Neuroscientist, 15(3), 261–273. https://doi.org/10.1177/1073858409333073
Article
PubMed
Google Scholar
Pollatsek, A., Lima, S., & Well, A. D. (1981). Concept or computation: Students’ understanding of the mean. Educational Studies in Mathematics, 12(2), 191–204. https://doi.org/10.1007/BF00305621
Article
Google Scholar
Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas. Journal of Experimental Psychology, 83(2, Pt.1), 304–308. https://doi.org/10.1037/h0028558
Article
Google Scholar
Raidvee, A., Toom, M., Averin, K., & Allik, J. (2020). Perception of means, sums, and areas. Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-019-01938-7
Ratwani, R. M., Trafton, J. G., & Boehm-Davis, D. A. (2008). Thinking graphically: Connecting vision and cognition during graph comprehension. Journal of Experimental Psychology: Applied, 14(1), 36–49. https://doi.org/10.1037/1076-898X.14.1.36
Article
PubMed
Google Scholar
Reading, C., & Shaughnessy, J. M. (2004). Reasoning about variation. In Dani Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 201–226). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/1-4020-2278-6_9
Chapter
Google Scholar
Reid, J., & Reading, C. (2008). Measuring the development of students’ consideration of variation. Statistics Education Research Journal, 7(1), 40–59.
Google Scholar
Rensink, R. A., & Baldridge, G. (2010). The Perception of Correlation in Scatterplots. Computer Graphics Forum, 29(3), 1203–1210. https://doi.org/10.1111/j.1467-8659.2009.01694.x
Article
Google Scholar
Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614. https://doi.org/10.1111/j.1467-9280.2008.02130.x
Article
Google Scholar
Robitaille, N., & Harris, I. M. (2011). When more is less: Extraction of summary statistics benefits from larger sets. Journal of Vision, 11(12), 18–18. https://doi.org/10.1167/11.12.18
Article
PubMed
Google Scholar
Saket, B., Endert, A., & Demiralp, C. (2018). Task-based effectiveness of basic visualizations. IEEE Transactions on Visualization and Computer Graphics, 25(7), 2505–2512. https://doi.org/10.1109/TVCG.2018.2829750
Saket, B., Srinivasan, A., Ragan, E. D., & Endert, A. (2018). Evaluating interactive graphical encodings for data visualization. IEEE Transactions on Visualization and Computer Graphics, 24(3), 1316–1330. https://doi.org/10.1109/TVCG.2017.2680452
Article
PubMed
Google Scholar
Sedlmair, M., Tatu, A., Munzner, T., & Tory, M. (2012). A taxonomy of visual cluster separation factors. Computer Graphics Forum, 31(3, Pt. 4), 1335–1344. https://doi.org/10.1111/j.1467-8659.2012.03125.x
Article
Google Scholar
Shah, P., & Freedman, E. G. (2011). Bar and line graph comprehension: An interaction of top-down and bottom-up processes: Topics in cognitive science. Topics in Cognitive Science, 3(3), 560–578. https://doi.org/10.1111/j.1756-8765.2009.01066.x
Article
PubMed
Google Scholar
Shah, P., Freedman, E. G., & Vekiri, I. (2005). The comprehension of quantitative information in graphical displays. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 426–476). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511610448.012
Chapter
Google Scholar
Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational Psychology Review, 14(1), 47–69. https://doi.org/10.1023/A:1013180410169
Article
Google Scholar
Silverman, A., Gramazio, C., & Schloss, K. (2016). The dark is more (Dark+) bias in colormap data visualizations with legends. Journal of Vision, 16(12), 628. https://doi.org/10.1167/16.12.628
Article
Google Scholar
Simkin, D., & Hastie, R. (1987). An Information-Processing Analysis of Graph Perception. Journal of the American Statistical Association, 82(398), 454–465. https://doi.org/10.1080/01621459.1987.10478448
Article
Google Scholar
Simons, D. J., & Myczek, K. (2008). Average size perception and the allure of a new mechanism. Perception & Psychophysics, 70(7), 1335–1336. https://doi.org/10.3758/PP.70.7.1335
Article
Google Scholar
Skau, D., & Kosara, R. (2016). Arcs, angles, or areas: Individual data encodings in pie and donut charts. Computer Graphics Forum, 35(3), 121–130. https://doi.org/10.1111/cgf.12888
Article
Google Scholar
Solomon, J. A. (2010). Visual discrimination of orientation statistics in crowded and uncrowded arrays. Journal of Vision, 10(14), 19–19. https://doi.org/10.1167/10.14.19
Article
PubMed
Google Scholar
Solomon, J. A. & Morgan, M. J. (2018). Calculation efficiencies for mean numerosity. Psychological Science, 29(11), 1824–1831. https://doi.org/10.1177/0956797618790545
Solomon, J. A., Morgan, M., & Chubb, C. (2011). Efficiencies for the statistics of size discrimination. Journal of Vision, 11(12), 13–13. https://doi.org/10.1167/11.12.13
Article
PubMed
PubMed Central
Google Scholar
Stephenson, D. B., & Doblas-Reyes, F. J. (2000). Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus A, 52(3), 300–322. https://doi.org/10.1034/j.1600-0870.2000.d01-5.x
Article
Google Scholar
Strauss, S., & Bichler, E. (1988). The development of children’s concepts of the arithmetic average. Journal for Research in Mathematics Education, 19(1), 64–80.
Article
Google Scholar
Suárez-Pinilla, M., Seth, A. K., & Roseboom, W. (2018). Serial dependence in the perception of visual variance. Journal of Vision, 18(7), 4. https://doi.org/10.1167/18.7.4
Article
PubMed
PubMed Central
Google Scholar
Sweeny, T. D., Haroz, S., & Whitney, D. (2013). Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 329–337. https://doi.org/10.1037/a0028712
Article
PubMed
Google Scholar
Szafir, D. A. (2018). Modeling color difference for visualization design. IEEE Transactions on Visualization and Computer Graphics, 24(1), 392–401. https://doi.org/10.1109/TVCG.2017.2744359
Article
PubMed
Google Scholar
Szafir, D. A., Haroz, S., Gleicher, M., & Franconeri, S. (2016). Four types of ensemble coding in data visualizations. Journal of Vision, 16(5), 11. https://doi.org/10.1167/16.5.11
Article
PubMed
Google Scholar
Tiurina, N. A., & Utochkin, I. S. (2019). Ensemble perception in depth: Correct size-distance rescaling of multiple objects before averaging. Journal of Experimental Psychology: General, 148(4), 728–738. https://doi.org/10.1037/xge0000485
Article
Google Scholar
Tokita, M., Ueda, S., & Ishiguchi, A. (2016). Evidence for a global sampling process in extraction of summary statistics of item sizes in a set. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00711
Tong, K., Ji, L., Chen, W., & Fu, X. (2015). Unstable mean context causes sensitivity loss and biased estimation of variability. Journal of Vision, 15(4), 15. https://doi.org/10.1167/15.4.15
Article
PubMed
Google Scholar
Torgerson, W. S. (1961). Distances and ratios in psychophysical scaling. Acta Psychologica, 19, 201–205. https://doi.org/10.1016/S0001-6918(61)80072-3
Article
Google Scholar
Utochkin, I. S., & Brady, T. F. (2020). Individual representations in visual working memory inherit ensemble properties. Journal of Experimental Psychology: Human Perception and Performance, 46(5), 458–473. https://doi.org/10.1037/xhp0000727
Article
PubMed
Google Scholar
Utochkin, I. S., Khvostov, V. A., & Stakina, Y. M. (2018). Continuous to discrete: Ensemble-based segmentation in the perception of multiple feature conjunctions. Cognition, 179, 178–191. https://doi.org/10.1016/j.cognition.2018.06.016
Article
PubMed
Google Scholar
Valsecchi, M., Stucchi, N., & Scocchia, L. (2018). Repulsive serial effects in visual numerosity judgments. Perception, 47(7), 780–788. https://doi.org/10.1177/0301006618775235
Article
PubMed
Google Scholar
Wang, P.-Y., Vaughn, B. K., & Liu, M. (2011). The impact of animation interactivity on novices’ learning of introductory statistics. Computers & Education, 56(1), 300–311. https://doi.org/10.1016/j.compedu.2010.07.011
Article
Google Scholar
Ward, E. J., Bear, A., & Scholl, B. J. (2016). Can you perceive ensembles without perceiving individuals?: The role of statistical perception in determining whether awareness overflows access. Cognition, 152, 78–86. https://doi.org/10.1016/j.cognition.2016.01.010
Article
PubMed
Google Scholar
Westfall, P. H. (2014). Kurtosis as peakedness, 1905–2014. R.I.P. The American Statistician, 68(3), 191–195. https://doi.org/10.1080/00031305.2014.917055
Article
PubMed
PubMed Central
Google Scholar
Westheimer, G. (2010). Visual acuity and hyperacuity. In M. Bass (Ed.), Handbook of optics. Vol. 3: Vision and vision optics (3rd ed., Ch. 5). New York, NY: McGraw Hill.
Whitaker, D., & Walker, H. (1988). Centroid evaluation in the vernier alignment of random dot clusters. Vision Research, 28(7), 777–784. https://doi.org/10.1016/0042-6989(88)90024-7
Article
PubMed
Google Scholar
Whitaker, R. T., Mirzargar, M., & Kirby, R. M. (2013). Contour boxplots: A method for characterizing uncertainty in feature sets from simulation ensembles. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2713–2722. https://doi.org/10.1109/TVCG.2013.143
Article
PubMed
Google Scholar
Whitney, D., & Yamanashi Leib, A. (2018). Ensemble perception. Annual Review of Psychology, 69(1), 105–129. https://doi.org/10.1146/annurev-psych-010416-044232
Article
PubMed
Google Scholar
Wild, C. J. (2006). The concept of distribution. Statistics Education Research Journal, 5(2), 10–26.
Google Scholar
Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
Article
Google Scholar
Witt, J. K. (2019). The perceptual experience of variability in line orientation is greatly exaggerated. Journal of Experimental Psychology: Human Perception and Performance, 45(8), 1083–1103. https://doi.org/10.1037/xhp0000648
Article
PubMed
Google Scholar
Witzel, C., & Gegenfurtner, K. R. (2013). Categorical sensitivity to color differences. Journal of Vision, 13(7), 1–1. https://doi.org/10.1167/13.7.1
Article
PubMed
Google Scholar
Wolfe, B. A., Kosovicheva, A. A., Leib, A. Y., Wood, K., & Whitney, D. (2015). Foveal input is not required for perception of crowd facial expression. Journal of Vision, 15(4), 11. https://doi.org/10.1167/15.4.11
Article
PubMed
PubMed Central
Google Scholar
Wright, J. M., Morris, A. P., & Krekelberg, B. (2011). Weighted integration of visual position information. Journal of Vision, 11(14), 11–11. https://doi.org/10.1167/11.14.11
Article
PubMed
Google Scholar
Yamanashi Leib, A., Kosovicheva, A., & Whitney, D. (2016). Fast ensemble representations for abstract visual impressions. Nature Communications, 7(1), 13186. https://doi.org/10.1038/ncomms13186
Article
Google Scholar
Yang, Y., Tokita, M., & Ishiguchi, A. (2018). Is There a Common Summary Statistical Process for Representing the Mean and Variance? A Study Using Illustrations of Familiar Items. I-Perception, 9(1), 204166951774729. https://doi.org/10.1177/2041669517747297
Article
Google Scholar
Yildirim, I., Öğreden, O., & Boduroglu, A. (2018). Impact of spatial grouping on mean size estimation. Attention, Perception, & Psychophysics, 80(7), 1847–1862. https://doi.org/10.3758/s13414-018-1560-5
Article
Google Scholar
Ying, H., Burns, E., Lin, X., & Xu, H. (2019). Ensemble statistics shape face adaptation and the cheerleader effect. Journal of Experimental Psychology: General, 148(3), 421–436. https://doi.org/10.1037/xge0000564
Article
Google Scholar
Yu, J., Goldstone, R. L., & Landy, D. (2018). Experientially grounded learning about the roles of variability, sample size, and difference between means in statistical reasoning (pp. 2744–2749). Madison, CI: Cognitive Science Society.
Yuan, L., Haroz, S., & Franconeri, S. (2019). Perceptual proxies for extracting averages in data visualizations. Psychonomic Bulletin & Review, 26(2), 669–676. https://doi.org/10.3758/s13423-018-1525-7
Article
Google Scholar
Zacks, J., Levy, E., Tversky, B., & Schiano, D. J. (1998). Reading bar graphs: Effects of extraneous depth cues and graphical context. Journal of Experimental Psychology: Applied, 4(2), 119–138. https://doi.org/10.1037/1076-898X.4.2.119
Article
Google Scholar