Paying attention to speech: The role of working memory capacity and professional experience

Abstract

Managing attention in multispeaker environments is a challenging feat that is critical for human performance. However, why some people are better than others in allocating attention appropriately remains highly unknown. Here, we investigated the contribution of two factors—working memory capacity (WMC) and professional experience—to performance on two different types of attention task: selective attention to one speaker and distributed attention among multiple concurrent speakers. We compared performance across three groups: individuals with low (n = 20) and high (n = 25) WMC, and aircraft pilots (n = 24), whose profession poses extremely high demands for both selective and distributed attention to speech. Results suggests that selective attention is highly effective, with good performance maintained under increasingly adverse conditions, whereas performance decreases substantially with the requirement to distribute attention among a larger number of speakers. Importantly, both types of attention benefit from higher WMC, suggesting reliance on some common capacity-limited resources. However, only selective attention was further improved in the pilots, pointing to its flexible and trainable nature, whereas distributed attention seems to suffer from more fixed and severe processing bottlenecks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arbula, S., Capizzi, M., Lombardo, N., & Vallesi, A. (2016). How life experience shapes cognitive control strategies: The case of air traffic control training. PLOS ONE, 11(6), e0157731. doi:https://doi.org/10.1371/journal.pone.0157731

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.

    Article  Google Scholar 

  3. Baldock, J., Kapadia, S., & van Steenbrugge, W. (2018). The task-evoked pupil response in divided auditory attention tasks. Journal of the American Academy of Audiology. doi:https://doi.org/10.3766/jaaa.17060

  4. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. doi:https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  5. Beaman, C. P., Bridges, A. M., & Scott, S. K. (2007). From dichotic listening to the irrelevant sound effect: A behavioural and neuroimaging analysis of the processing of unattended speech. Cortex, 43(1), 124–134. doi:https://doi.org/10.1016/S0010-9452(08)70450-7

    Article  PubMed  Google Scholar 

  6. Bentin, S., Kutas, M., & Hillyard, S. A. (1995). Semantic processing and memory for attended and unattended words in dichotic listening: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 54–67. doi:https://doi.org/10.1037/0096-1523.21.1.54

    Article  PubMed  Google Scholar 

  7. Best, V., Gallun, F. J., Mason, C. R., Kidd, G., & Shinn-Cunningham, B. G. (2010). The impact of noise and hearing loss on the processing of simultaneous sentences. Ear and Hearing, 31(2), 213–220. doi:https://doi.org/10.1097/AUD.0b013e3181c34ba6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bleckley, M. K., Durso, F. T., Crutchfield, J. M., Engle, R. W., & Khanna, M. M. (2003). Individual differences in working memory capacity predict visual attention allocation. Psychonomic Bulletin & Review, 10(4), 884–889. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15000535

    Article  Google Scholar 

  9. Borella, E., Pezzuti, L., De Beni, R., & Cornoldi, C. (2019). Intelligence and working memory: Evidence from administering the WAIS-IV to Italian adults and elderly. Psychological Research, 1–13. doi:https://doi.org/10.1007/s00426-019-01173-7

  10. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  11. Broadbent, D. E. (1954). The role of auditory localization in attention and memory span. Journal of Experimental Psychology, 47(3), 191–196. doi:https://doi.org/10.1037/h0054182

    Article  PubMed  Google Scholar 

  12. Broadbent, D. E. (1958). Perception and communication. Elmsford, NY: Pergamon Press. doi:https://doi.org/10.1037/10037-002

    Book  Google Scholar 

  13. Bronkhorst, A. W. (2015). The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, & Psychophysics, 77(5), 1465–1487. doi:https://doi.org/10.3758/s13414-015-0882-9

    Article  Google Scholar 

  14. Brown, S. W., Collier, S. A., & Night, J. C. (2013). Timing and executive resources: Dual-task interference patterns between temporal production and shifting, updating, and inhibition tasks. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 947–963. doi:https://doi.org/10.1037/a0030484

    Article  PubMed  Google Scholar 

  15. Brungart, D. S., Kordik, A. J., & Simpson, B. D. (2005). Audio and visual cues in a two-talker divided attention speech-monitoring task. Human Factors: The Journal of the Human Factors and Ergonomics Society, 47(3), 562–573. doi:https://doi.org/10.1518/001872005774860023

    Article  Google Scholar 

  16. Brungart, D. S., Chang, P. S., Simpson, B. D., & Wang, D. (2009). Multitalker speech perception with ideal time-frequency segregation: Effects of voice characteristics and number of talkers. The Journal of the Acoustical Society of America, 125(6), 4006–4022. doi:https://doi.org/10.1121/1.3117686

    Article  PubMed  Google Scholar 

  17. Buitenweg, J. I. V., Murre, J. M. J., & Ridderinkhof, K. R. (2012). Brain training in progress: A review of trainability in healthy seniors. Frontiers in Human Neuroscience, 6, 183. doi:https://doi.org/10.3389/fnhum.2012.00183

    Article  PubMed  PubMed Central  Google Scholar 

  18. Callan, D. E., Gateau, T., Durantin, G., Gonthier, N., & Dehais, F. (2018). Disruption in neural phase synchrony is related to identification of inattentional deafness in real-world setting. Human Brain Mapping, 39(6), 2596–2608. doi:https://doi.org/10.1002/hbm.24026

    Article  PubMed  PubMed Central  Google Scholar 

  19. Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV): Exploratory and higher order factor analyses. Psychological Assessment, 22(4), 827–836. doi:https://doi.org/10.1037/a0020429

    Article  PubMed  Google Scholar 

  20. Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY: Cambridge University Press

    Book  Google Scholar 

  21. Cherry, C. E. (1953). Some experiments on the recognition of speech, with one and two ears. Journal of the Acoustic Society of America, 25, 975–979.

    Article  Google Scholar 

  22. Conway, A. R. A., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin & Review, 8(2), 331–335. doi:https://doi.org/10.3758/BF03196169

    Article  Google Scholar 

  23. Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70(1), 80–90. doi:https://doi.org/10.1037/h0039515

    Article  PubMed  Google Scholar 

  24. Ding, N., & Simon, J. Z. (2012). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences, 109(29), 11854–11859. doi:https://doi.org/10.1073/pnas.1205381109

    Article  Google Scholar 

  25. Ding, N., Pan, X., Luo, C., Su, N., Zhang, W., & Zhang, J. (2018). Attention is required for knowledge-based sequential grouping: Insights from the Integration of Syllables into Words. The Journal of Neuroscience, 38(5), 1178–1188. doi:https://doi.org/10.1523/JNEUROSCI.2606-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  26. Driver, J. (2001). A selective review of selective attention research from the past century. British Journal of Psychology (London, England : 1953), 92 Part 1, 53–78. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11802865

  27. Drullman, R., & Bronkhorst, A. W. (2004). Speech perception and talker segregation: Effects of level, pitch, and tactile support with multiple simultaneous talkers. The Journal of the Acoustical Society of America, 116(5), 3090–3098. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15603154

    Article  Google Scholar 

  28. Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87(3), 272–300. doi:https://doi.org/10.1037/0033-295X.87.3.272

    Article  PubMed  Google Scholar 

  29. Dupoux, E., Kouider, S., & Mehler, J. (2003). Lexical access without attention? Explorations using dichotic priming. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 172–184. doi:https://doi.org/10.1037/0096-1523.29.1.172

    Article  PubMed  Google Scholar 

  30. Elliott, E. M., & Briganti, A. M. (2012). Investigating the role of attentional resources in the irrelevant speech effect. Acta Psychologica, 140(1), 64–74. doi:https://doi.org/10.1016/J.ACTPSY.2012.02.009

    Article  PubMed  Google Scholar 

  31. Enns, J. T., Kealong, P., Tichon, J. G., & Visser, T. A. W. (2017). Training and the attentional blink: Raising the ceiling does not remove the limits. Attention, Perception, & Psychophysics, 79(8), 2257–2274. doi:https://doi.org/10.3758/s13414-017-1391-9

    Article  Google Scholar 

  32. Escera, C., Yago, E., Corral, M.-J., Corbera, S., & Nuñez, M. I. (2003). Attention capture by auditory significant stimuli: semantic analysis follows attention switching. European Journal of Neuroscience, 18(8), 2408–2412. doi:https://doi.org/10.1046/j.1460-9568.2003.02937.x

    Article  PubMed  Google Scholar 

  33. Fairnie, J., Brian, B. C. J., & Remington, A. (2016). Missing a trick: Auditory load modulates conscious awareness in audition. Journal of Experimental Psychology: Human Perception and Performance, 42(7), 930–938. doi:https://doi.org/10.1037/xhp0000204

    Article  PubMed  Google Scholar 

  34. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi:https://doi.org/10.3758/BF03193146

    Article  PubMed  Google Scholar 

  35. Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2004). Effect of number of masking talkers and auditory priming on informational masking in speech recognition. The Journal of the Acoustical Society of America, 115(5, Pt. 1), 2246–2256. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15139635

    Article  Google Scholar 

  36. Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7(4), 237–241. doi:https://doi.org/10.1111/j.1467-9280.1996.tb00366.x

    Article  Google Scholar 

  37. Fusser, F., Linden, D. E. J., Rahm, B., Hampel, H., Haenschel, C., & Mayer, J. S. (2011). Common capacity-limited neural mechanisms of selective attention and spatial working memory encoding. European Journal of Neuroscience, 34(5), 827–838. doi:https://doi.org/10.1111/j.1460-9568.2011.07794.x

    Article  PubMed  Google Scholar 

  38. Getzmann, S., Golob, E. J., & Wascher, E. (2016). Focused and divided attention in a simulated cocktail-party situation: ERP evidence from younger and older adults. Neurobiology of Aging, 41, 138–149. doi:https://doi.org/10.1016/j.neurobiolaging.2016.02.018

    Article  PubMed  Google Scholar 

  39. Gopher, D. (1982). A selective attention test as a predictor of success in flight training. Human Factors: The Journal of the Human Factors and Ergonomics Society, 24(2), 173–183.

    Article  Google Scholar 

  40. Gopher, D., & Kahneman, D. (1971). Individual differences in attention and the prediction of flight criteria. Perceptual and Motor Skills, 33(Suppl. 3), 1335–1342. doi:https://doi.org/10.2466/pms.1971.33.3f.1335

    Article  PubMed  Google Scholar 

  41. Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. doi:https://doi.org/10.1111/2041-210X.12504

    Article  Google Scholar 

  42. Gygi, B., & Shafiro, V. (2012). Spatial and temporal factors in a multitalker dual listening task. Acta Acustica United with Acustica, 98(1), 142–157. doi:https://doi.org/10.3813/AAA.918500

    Article  Google Scholar 

  43. Hausfeld, L., Riecke, L., Valente, G., & Formisano, E. (2018). Cortical tracking of multiple streams outside the focus of attention in naturalistic auditory scenes. NeuroImage, 181, 617–626. doi:https://doi.org/10.1016/J.NEUROIMAGE.2018.07.052

    Article  PubMed  Google Scholar 

  44. Helland, T., Morken, F., Bless, J. J., Valderhaug, H. V., Eiken, M., Helland, W. A., & Torkildsen, J. V. K. (2018). Auditive training effects from a dichotic listening app in children with dyslexia. Dyslexia (Chichester, England), 24(4), 336–356. doi:https://doi.org/10.1002/dys.1600

    Article  PubMed Central  Google Scholar 

  45. Hilburn, B. (2004). Cognitive complexity in air traffic control: A literature review. Tech. Rep. EEC Note 04/04, Eurocontrol.

  46. Hiscock, M., Inch, R., & Kinsbourne, M. (1999). Allocation of attention in dichotic listening: Effects on the detection and localization of targets within lists. Journal of Clinical and Experimental Neuropsychology, 21(2), 265–278. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10515734

    Article  Google Scholar 

  47. Howard-Jones, P. A., & Rosen, S. (1993). Uncomodulated glimpsing in “checkerboard” noise. The Journal of the Acoustical Society of America, 93(5), 2915–2922. doi:https://doi.org/10.1121/1.405811

    Article  PubMed  Google Scholar 

  48. Hughes, R. W. (2014). Auditory distraction: A duplex-mechanism account. PsyCh Journal, 3(1), 30–41. doi:https://doi.org/10.1002/pchj.44

    Article  PubMed  Google Scholar 

  49. Humes, L. E., Lee, J. H., & Coughlin, M. P. (2006). Auditory measures of selective and divided attention in young and older adults using single-talker competition. The Journal of the Acoustical Society of America, 120(5), 2926–2937. doi:https://doi.org/10.1121/1.2354070

    Article  PubMed  Google Scholar 

  50. Humes, L. E., Kidd, G. R., & Fogerty, D. (2017). Exploring use of the coordinate response measure in a multitalker babble paradigm. Journal of Speech, Language, and Hearing Research, 60(3), 741–754. doi:https://doi.org/10.1044/2016_JSLHR-H-16-0042

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446. doi:https://doi.org/10.1016/j.jml.2007.11.007

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jäncke, L., Specht, K., Shah, J. N., & Hugdahl, K. (2003). Focused attention in a simple dichotic listening task: An fMRI experiment. Cognitive Brain Research, 16(2), 257–266. doi:https://doi.org/10.1016/S0926-6410(02)00281-1

    Article  PubMed  Google Scholar 

  53. Kahneman, D. (1973). Attention and effort. Prentice-Hall. Retrieved from https://books.google.co.il/books/about/Attention_and_effort.html?id=7kvuAAAAMAAJ&redir_esc=y

  54. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637–671. doi:https://doi.org/10.3758/BF03196323

    Article  Google Scholar 

  55. Kaya, E. M., & Elhilali, M. (2017). Modelling auditory attention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1714), 20160101. doi:https://doi.org/10.1098/rstb.2016.0101

    Article  PubMed  PubMed Central  Google Scholar 

  56. Keidser, G., Best, V., Freeston, K., & Boyce, A. (2015). Cognitive spare capacity: evaluation data and its association with comprehension of dynamic conversations. Frontiers in Psychology, 6, 597. doi:https://doi.org/10.3389/fpsyg.2015.00597

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kidd, G., Mason, C. R., Swaminathan, J., Roverud, E., Clayton, K. K., Best, V., & Best, V. (2016). Determining the energetic and informational components of speech-on-speech masking. The Journal of the Acoustical Society of America, 140(1), 132. doi:https://doi.org/10.1121/1.4954748

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review, 20(2), 228–242. doi:https://doi.org/10.3758/s13423-012-0359-y

    Article  Google Scholar 

  59. Koelewijn, T., Shinn-Cunningham, B. G., Zekveld, A. A., & Kramer, S. E. (2014). The pupil response is sensitive to divided attention during speech processing. Hearing Research, 312, 114–120. doi:https://doi.org/10.1016/j.heares.2014.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. doi:https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  61. Lachter, J., Forster, K. I., & Ruthruff, E. (2004). Forty-five years after Broadbent (1958): Still no identification without attention. doi:https://doi.org/10.1037/0033-295x.111.4.880

  62. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load Theory of Selective Attention and Cognitive Control. Journal of Experimental Psychology: General, 133(3), 339–354. doi:https://doi.org/10.1037/0096-3445.133.3.339

    Article  Google Scholar 

  63. Lin, G., & Carlile, S. (2015). Costs of switching auditory spatial attention in following conversational turn-taking. Frontiers in Neuroscience, 9(MAR). doi:https://doi.org/10.3389/fnins.2015.00124

  64. Lu, K., Xu, Y., Yin, P., Oxenham, A. J., Fritz, J. B., & Shamma, S. A. (2017). Temporal coherence structure rapidly shapes neuronal interactions. Nature Communications, 8, 13900. doi:https://doi.org/10.1038/ncomms13900

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martin, J., Jerger, J., & Mehta, J. (2007). Divided-attention and directed-attention listening modes in children with dichotic deficits: An event-related potential study. Journal of the American Academy of Audiology, 18(1), 34–53. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17252957

    Article  Google Scholar 

  66. McDermott, J. H. (2009). The cocktail party problem. Current Biology, 19(22), R1024–R1027. doi:https://doi.org/10.1016/j.cub.2009.09.005

    Article  PubMed  Google Scholar 

  67. Mishra, J., de Villers-Sidani, E., Merzenich, M., & Gazzaley, A. (2014). Adaptive training diminishes distractibility in aging across species. Neuron, 84(5), 1091–1103. doi:https://doi.org/10.1016/j.neuron.2014.10.034

    Article  PubMed  PubMed Central  Google Scholar 

  68. Moray, N., Bates, A., & Barnett, T. (1965). Experiments on the four-eared man. The Journal of the Acoustical Society of America, 38(2), 196–201. doi:https://doi.org/10.1121/1.1909631

    Article  PubMed  Google Scholar 

  69. Murphy, C. F. B., Moore, D. R., & Schochat, E. (2015). Generalization of auditory sensory and cognitive learning in typically developing children. PLOS ONE, 10(8), e0135422. doi:https://doi.org/10.1371/journal.pone.0135422

    Article  PubMed  PubMed Central  Google Scholar 

  70. Murphy, S., Spence, C., & Dalton, P. (2017). Auditory perceptual load: A review. Hearing Research, 352, 40–48. doi:https://doi.org/10.1016/J.HEARES.2017.02.005

    Article  PubMed  Google Scholar 

  71. Neely, C., & LeCompte, D. (1999). The importance of semantic similarity to the irrelevant speech effect. Memory & Cognition, 27(1), 37–44. doi:https://doi.org/10.3758/bf03201211

    Article  Google Scholar 

  72. O’hare, D. (1997). Cognitive ability determinants of elite pilot performance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 39(4), 540–552. doi:https://doi.org/10.1177/001872089703900402

    Article  Google Scholar 

  73. Oberfeld, D., & Klöckner-Nowotny, F. (2016). Individual differences in selective attention predict speech identification at a cocktail party. ELife, 5. doi:https://doi.org/10.7554/eLife.16747

  74. Oswald, C. J. P., Tremblay, S., & Jones, D. M. (2000). Disruption of comprehension by the meaning of irrelevant sound. Memory, 8(5), 345–350. doi:https://doi.org/10.1080/09658210050117762

    Article  PubMed  Google Scholar 

  75. Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., … Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. doi:https://doi.org/10.3758/s13428-018-01193-y

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pérez, N. P., Guevara López, M. A., Silva, A., & Ramos, I. (2015). Improving the Mann-Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography. Artificial Intelligence in Medicine, 63(1), 19–31. doi:https://doi.org/10.1016/j.artmed.2014.12.004

    Article  PubMed  Google Scholar 

  77. Puvvada, K. C., & Simon, J. Z. (2017). Cortical representations of speech in a multitalker auditory scene. The Journal of Neuroscience, 37(38), 9189–9196. doi:https://doi.org/10.1523/JNEUROSCI.0938-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rey-Mermet, A., Gade, M., Souza, A. S., von Bastian, C. C., & Oberauer, K. (2019). Is executive control related to working memory capacity and fluid intelligence? Journal of Experimental Psychology: General, 148(8), 1335–1372. doi:https://doi.org/10.1037/xge0000593

    Article  Google Scholar 

  79. Röer, J. P., Körner, U., Buchner, A., & Bell, R. (2017). Attentional capture by taboo words: A functional view of auditory distraction. Emotion, 17(4), 740–750. doi:https://doi.org/10.1037/emo0000274

    Article  PubMed  Google Scholar 

  80. Salmela, V. R., Moisala, M., & Alho, K. (2014). Working memory resources are shared across sensory modalities. Attention, Perception, & Psychophysics, 76(7), 1962–1974. doi:https://doi.org/10.3758/s13414-014-0714-3

    Article  Google Scholar 

  81. Salo, E., Salmela, V., Salmi, J., Numminen, J., & Alho, K. (2017). Brain activity associated with selective attention, divided attention and distraction. Brain Research, 1664, 25–36. doi:https://doi.org/10.1016/j.brainres.2017.03.021

    Article  PubMed  Google Scholar 

  82. Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110. doi:https://doi.org/10.2307/3002019

    Article  PubMed  Google Scholar 

  83. Shafiro, V., & Gygi, B. (2007). Perceiving the speech of multiple concurrent talkers in a combined divided and selective attention task. The Journal of the Acoustical Society of America, 122(6), EL229–E235. doi:https://doi.org/10.1121/1.2806174

    Article  PubMed  Google Scholar 

  84. Simpson, S. A., & Cooke, M. (2005). Consonant identification in N-talker babble is a nonmonotonic function of N. The Journal of the Acoustical Society of America, 118(5), 2775–2778. doi:https://doi.org/10.1121/1.2062650

    Article  PubMed  Google Scholar 

  85. Sörqvist, P., & Rönnberg, J. (2014). Individual differences in distractibility: An update and a model. PsyCh Journal, 3(1), 42–57. doi:https://doi.org/10.1002/pchj.47

    Article  PubMed  PubMed Central  Google Scholar 

  86. Soveri, A., Tallus, J., Laine, M., Nyberg, L., Bäckman, L., Hugdahl, K., … Hämäläinen, H. (2013). Modulation of auditory attention by training. Experimental Psychology, 60(1), 44–52. doi:https://doi.org/10.1027/1618-3169/a000172

    Article  PubMed  Google Scholar 

  87. Sussman, E. S. (2017). Auditory scene analysis: An attention perspective. Journal of Speech, Language, and Hearing Research, 60(10), 2989–3000. doi:https://doi.org/10.1044/2017_JSLHR-H-17-0041

    Article  PubMed  PubMed Central  Google Scholar 

  88. Treisman, A. M. (1964a). The effect of irrelevant material on the efficiency of selective listening. The American Journal of Psychology, 77(4), 533–546. doi:https://doi.org/10.2307/1420765

    Article  PubMed  Google Scholar 

  89. Treisman, A. M. (1964b). Verbal cues, language, and meaning in selective attention. The American Journal of Psychology, 77(2), 206. doi:https://doi.org/10.2307/1420127

    Article  PubMed  Google Scholar 

  90. Treisman, A. M., & Geffen, G. (1967). Selective attention: Perception or response? Quarterly Journal of Experimental Psychology, 19(1), 1–17. doi:https://doi.org/10.1080/14640746708400062

    Article  PubMed  Google Scholar 

  91. Tsuchida, Y., Murohashi, H., Katayama, J., & Murohashi, H. (2012). Working memory capacity affects the interference control of distractors at auditory gating. Neuroscience Letters, 516(1), 62–66. doi:https://doi.org/10.1016/j.neulet.2012.03.057

    Article  PubMed  Google Scholar 

  92. Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21(3), 384–390. doi:https://doi.org/10.1177/0956797610361340

    Article  PubMed  Google Scholar 

  93. Wiemers, E. A., & Redick, T. S. (2018). Working memory capacity and intra-individual variability of proactive control. Acta Psychologica, 182, 21–31. doi:https://doi.org/10.1016/J.ACTPSY.2017.11.002

    Article  PubMed  Google Scholar 

  94. Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12(1), 3–18. doi:https://doi.org/10.1207/S15327108IJAP1201_2

    Article  Google Scholar 

  95. Wood, N., & Cowan, N. (1995). The cocktail party phenomenon revisited: How frequent are attention shifts to one’s name in an irrelevant auditory channel? Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 255–260. doi:https://doi.org/10.1037/0278-7393.21.1.255

    Article  PubMed  Google Scholar 

  96. Woods, K. J. P., & McDermott, J. H. (2015). Attentive tracking of sound sources. Current Biology: CB, 25(17), 2238–2246. doi:https://doi.org/10.1016/j.cub.2015.07.043

    Article  PubMed  Google Scholar 

  97. Yost, W. A., Dye, R. H., & Sheft, S. (1996). A simulated “cocktail party” with up to three sound sources. Perception & Psychophysics, 58(7), 1026–1036. doi:https://doi.org/10.3758/BF03206830

    Article  Google Scholar 

  98. Zion Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann, G., … Schroeder, C. E. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a cocktail party. Neuron, 77(5), 980–991. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0896627313000457

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the following research grants: Marie Curie Career Integration Grant #631265 (E.Z.G.), and Binational Science Foundation Grant #2015385 (E.Z.G.).

Author contributions statement

B.L., Y.R., and E.Z.G. designed the study; B.L. and P.H.S. collected the data; B.L. and G.A. ran statistical analyses and prepared the figures; B.L. and E.Z.G. wrote the main manuscript text. All authors reviewed the manuscript.

Open practices statement

The study was preregistered prior to commencement of data collection through the Center for Open Science (COS; https://osf.io/tk6gc), describing the specific experimental design and power analysis for a priori estimation of the required group size. The original preregistration focused only on the high WMC and pilot groups, and recruitment of the low WMC group was decided upon at a later stage.

The data and code for statistical analysis in R are available on the Golumbic Lab website (www.golumbiclab.org/data).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elana Zion Golumbic.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lambez, B., Agmon, G., Har-Shai Yahav, P. et al. Paying attention to speech: The role of working memory capacity and professional experience. Atten Percept Psychophys 82, 3594–3605 (2020). https://doi.org/10.3758/s13414-020-02091-2

Download citation

Keywords

  • Auditory attention
  • Speech processing
  • Cocktail party
  • Selective
  • Distributed