Advertisement

Phonological memory traces do not contain phonetic information

  • Ryan RhodesEmail author
  • Chao Han
  • Arild Hestvik
Perceptual/Cognitive Constraints on the Structure of Speech Communication: In Honor of Randy Diehl
  • 53 Downloads

Abstract

We use a “varying standards” oddball paradigm and compare two phonetically differing conditions to find evidence that the auditory cortex has access to discrete phonological representations when making predictions about incoming speech sounds. Brain responses were recorded with a 128-electrode EEG system as subjects passively listened to synthetic speech sounds from a /dæ/-/tæ/ continuum. Deviant stimuli were compared to a control condition to obtain a mismatch negativity (MMN) response, indicative of a “surprise” at a stimulus that deviates from the memory trace. We tested two conditions with phonetically different varying standards – a “low-T” condition with VOT values of 60, 65, and 70 ms, and a “high-T” condition with VOT values of 75, 80, and 85 ms. The amplitude of the mismatch response is generally sensitive to acoustic distance. If the memory trace generated by the auditory cortex contains phonetic information about the standards, then a difference in mismatch amplitude is expected. However, if a phonological memory trace is used, every standard will be represented identically and no difference in mismatch amplitude will be observed. We found no distance effect in our results, indicating an absence of fine-grained phonetic information. This supports the claim that the auditory cortex has access to phonological category representations.

Keywords

MMN Phonological representation VOT Perceptual boundary 

Notes

References

  1. Alho, K. (1995). Cerebral generators of mismatch megativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear & Hearing, 16, 38–51.CrossRefGoogle Scholar
  2. Bertoncini, J., & Bijeljac-Babic, R. (1987). Discrimination in neonates of very short CVs. The Journal of the Acoustical Society of America, 82(1), 31.  https://doi.org/10.1121/1.395570 CrossRefGoogle Scholar
  3. Butler, R. A., Spreng, M., & Keidel, W. D. (1969). Stimulus repetition rate factors which influence the auditory evoked potential in man. Psychophysiology, 5(6), 665–673.CrossRefGoogle Scholar
  4. Carney, A. E., Widin, G. P., & Viemeister, N. F. (1977). Noncategorical perception of stop consonants differing in VOT. The Journal of the Acoustical Society of America, 62(4), 961–970.  https://doi.org/10.1121/1.381590 CrossRefGoogle Scholar
  5. Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Näätänen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1(5), 351–353.  https://doi.org/10.1038/1561 CrossRefGoogle Scholar
  6. Datta, H., Shafer, V. L., Morr, M. L., Kurtzberg, D., & Schwartz, R. G. (2010). Electrophysiological indices of discrimination of long-duration, phonetically similar vowels in children with typical and atypical language development. Journal of Speech, Language, and Hearing Research, 53, 757–778.CrossRefGoogle Scholar
  7. Dehaene-Lambertz, G. (1997). Electrophysiological correlates of categorical phoneme perception in adults. NeuroReport, 8(4), 919–924.CrossRefGoogle Scholar
  8. Dehaene-Lambertz, G., & Pena, M. (2001). Electrophysiological evidence for automatic phonetic processing in neonates. Cognitive Neuroscience and Neuropsychology, 12(14), 3155–3158.Google Scholar
  9. Dien, J. (2010). The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data. Journal of Neuroscience Methods, 187(1), 138–145.  https://doi.org/10.1016/j.jneumeth.2009.12.009 CrossRefGoogle Scholar
  10. Dien, J. (2012). Applying principal components analysis to event-related potentials: A tutorial. Developmental Neuropsychology, 37(6), 497–517.  https://doi.org/10.1080/87565641.2012.697503 CrossRefGoogle Scholar
  11. Dien, J., & Frishkoff, G. A. (2005). Introduction to principal components analysis of event-related potentials. In T. Handy (Ed.), Event-related potentials: A methods handbook. Cambridge, MA: MIT Press.Google Scholar
  12. Dien, J., Khoe, W., & Mangun, G. R. (2007). Evaluation of PCA and ICA of simulated ERPs: Promax vs. infomax rotations. Human Brain Mapping, 28(8), 742–763.  https://doi.org/10.1002/hbm.20304 CrossRefGoogle Scholar
  13. Eimas, P. D. (1974). Auditory and linguistic processing of cues for place of articulation by infants. Perception & Psychophysics, 16(3), 513–521.  https://doi.org/10.3758/BF03198580 CrossRefGoogle Scholar
  14. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836.  https://doi.org/10.1098/rstb.2005.1622 CrossRefGoogle Scholar
  15. Fry, D. B., Abramson, A. S., Eimas, P. D., & Liberman, A. M. (1962). The identification and discrimination of synthetic vowels. Language and Speech, 5(4), 171–189.CrossRefGoogle Scholar
  16. Hestvik, A., & Durvasula, K. (2016). Brain & Language Neurobiological evidence for voicing underspecification in English, 152, 28–43.Google Scholar
  17. Iverson, P., & Kuhl, P. K. (1995). Mapping the perceptual magnet effect for speech using signal detection theory and multidimensional scaling. Journal of the Acoustic Society of America, 97(1), 553–562.CrossRefGoogle Scholar
  18. Jacobsen, T., & Schröger, E. (2004). Pre-attentive perception of vowel phonemes from variable speech stimuli. Psychophysiology, 41, 654–659.  https://doi.org/10.1111/j.1469-8986.2004.00175.x CrossRefGoogle Scholar
  19. Kenstowicz, M. (1994). Phonology in generative grammar. Cambridge, MA: Blackwell.Google Scholar
  20. Kuhl, P. K. (1991). Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Perception & Psychophysics, 50(2), 93–107. Retrieved from https://link-springer-com.proxy3.library.mcgill.ca/content/pdf/10.3758/BF03212211.pdf CrossRefGoogle Scholar
  21. Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 69–72.  https://doi.org/10.1126/science.1166301 CrossRefGoogle Scholar
  22. Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–368.  https://doi.org/10.1037/h0044417 CrossRefGoogle Scholar
  23. Liberman, A. M., Harris, K. S., Kinney, J. A., & Lane, H. (1961). The discrimination of relative onset-time of the components of certain speech and nonspeech patterns. Journal of Experimental Psychology, 61(5), 379–388.  https://doi.org/10.1037/h0049038 CrossRefGoogle Scholar
  24. Lisker, L., & Abramson, A. S. (1964). Cross-Language Study of Voicing in Initial Stops: Acoustical Measurements. Word, 20(3), 384–422.  https://doi.org/10.1121/1.2142685 CrossRefGoogle Scholar
  25. Lisker, L., & Abramson, A. S. (1967). Some Effects of Context on Voice Onset Tme in English Stops. Language and Speech, 10(February), 1–28.  https://doi.org/10.1177/002383096701000101 CrossRefGoogle Scholar
  26. Luck, S. J. (2014). An introduction to the event-related potential technique, Second Edition. Cambridge, MA: MIT Press.Google Scholar
  27. Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54(1), 146–157.  https://doi.org/10.1111/psyp.12639 CrossRefGoogle Scholar
  28. Miller, J. D., Wier, C. C., Pastore, R. E., Kelly, W. J., & Dooling, R. J. (1976). Discrimination and labeling of noise–buzz sequences with varying noise-lead times: An example of categorical perception. The Journal of the Acoustical Society of America, 60(2), 410–417.  https://doi.org/10.1121/1.381097 CrossRefGoogle Scholar
  29. Miller, J. L. (1994). On the internal structure of phonetic categories: a progress report. Cognition, 50(1-3), 271–285.  https://doi.org/10.1016/0010-0277(94)90031-0 CrossRefGoogle Scholar
  30. Miller, J. L., & Volaitis, L. E. (1989). Effect of speaking rate on the perceptual structure of a phonetic category. Perception & Psychophysics, 46(6), 505–512.  https://doi.org/10.3758/BF03208147 CrossRefGoogle Scholar
  31. Näätänen, R. (1979). Orienting and evoked potentials. In H. Kimmel, E. van Olst, & J. Orlebeke (Eds.), The orienting reflex in humans (pp. 61–75). Hillsdale, NJ: Erlbaum.Google Scholar
  32. Näätänen, R. (1985). Selective attention and stimulus processing: reflections in event-related potentials, magnetoencephalogram, and regional cerebral blood flow. In M. Posner & O. Marin (Eds.), Attention and performance (vol. XI, pp. 355–373). Hillsdale, NJ: Erlbaum.Google Scholar
  33. Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385(6615), 432–434.CrossRefGoogle Scholar
  34. Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity ( MMN ) in basic research of central auditory processing : A review. Clinical Neurophysiology, 118, 2544–2590.  https://doi.org/10.1016/j.clinph.2007.04.026 CrossRefGoogle Scholar
  35. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of component structure. Psychophysiology, 24, 375–425.CrossRefGoogle Scholar
  36. Neuhoff, N., Bruder, J., Bartling, J., Warnke, A., Remschmidt, H., Schulte-Körne, G., & Muller-Myhsok, B. (2012). Evidence for the Late MMN as a Neurophysiological Endophenotype for Dyslexia, 7(5), 1–8.  https://doi.org/10.1371/journal.pone.0034909
  37. Pastore, R. E., Ahroon, W. A., Buffuto, K. A., Friedman, C. J., Puleo, J. S., & Fink, E. A. (1977). Common factor model of categorical perception. Journal of Experimental Psychology: Human Perception and Performance, 3(4), 686–696.Google Scholar
  38. Phillips, C., Pellathy, T., & Marantz, A. (2000a). Phonological Feature Representations in Auditory Cortex. Unpublished Manuscript.Google Scholar
  39. Phillips, C., Pellathy, T., Marantz, A., Yellin, E., Wexler, K., Poeppel, D., … Roberts, T. (2000b). Auditory cortex accesses phonological categories: an MEG mismatch study. Journal of Cognitive Neuroscience, 12(6), 1038–1055.  https://doi.org/10.1162/08989290051137567 CrossRefGoogle Scholar
  40. Pisoni, D. B. (1973). Auditory and phonetic memory codes in the discrimination of consonants and vowels. Perception & Psychophysics, 13(2), 253–260.  https://doi.org/10.3758/BF03214136 CrossRefGoogle Scholar
  41. Pisoni, D. B., & Tash, J. (1974). Reaction times to comparisons within and across phonetic categories. Perception & Psychophysics, 15(2), 285–290.  https://doi.org/10.3758/BF03213946 CrossRefGoogle Scholar
  42. Rinne, T., Särkkä, A., Degerman, A., Schröger, E., & Alho, K. (2006). Two separate mechanisms underlie auditory change detection and involuntary control of attention, 7, 0–8.  https://doi.org/10.1016/j.brainres.2006.01.043
  43. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374.  https://doi.org/10.1016/j.jmp.2012.08.001 CrossRefGoogle Scholar
  44. Samuel, A. G. (1982). Phonetic prototypes. Perception & Psychophysics, 31(4), 307–314.  https://doi.org/10.3758/BF03202653 CrossRefGoogle Scholar
  45. Schröger, E. (1995). Processing of auditory deviants with changes in one versus two stimulus dimensions. Psychophysiology, 32, 55–65.CrossRefGoogle Scholar
  46. Shafer, V. L., Morr, M. L., Datta, H., Kurtzberg, D., & Schwartz, R. G. (2005). Neurophysiological indexes of speech processing deficits in children with specific language impairment. J Ournal of Cognitive Neuroscience, 17(7), 1168–1180.  https://doi.org/10.1162/0898929054475217 CrossRefGoogle Scholar
  47. Sharma, A., & Dorman, M. F. (1999). Cortical auditory evoked potential correlates of categorical perception of voice-onset time. The Journal of the Acoustical Society of America, 106(2), 1078–83.  https://doi.org/10.1121/1.428048 CrossRefGoogle Scholar
  48. Shestakova, A., Brattico, C. A. E., Huotilainen, M., Galunov, V., Soloviev, A., Sams, M., … Nììtìnen, R. (2002). Abstract phoneme representations in the left temporal cortex : magnetic mismatch negativity study. Cognitive Neuroscience and Neuropsychology, 13(0), 1–5.Google Scholar
  49. Simos, P. G., Diehl, R. L., Breier, J. I., Molis, M. R., Zouridakis, G., & Papanicolaou, A. C. (1998). MEG correlates of categorical perception of a voice onset time continuum in humans. Cognitive Brain Research, 7(2), 215–219.  https://doi.org/10.1016/S0926-6410(98)00037-8 CrossRefGoogle Scholar
  50. Spencer, K. M., Dien, J., & Donchin, E. (1999). A componential analysis of the ERP elicited by novel events using a dense electrode array. Psychophysiology, 36(3), 409–414.  https://doi.org/10.1017/S0048577299981180 CrossRefGoogle Scholar
  51. Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late ERP to deviant stimuli.pdf. Psychophysiology, 38, 343–358.  https://doi.org/10.1111/1469-8986.3820343 CrossRefGoogle Scholar
  52. Steinschneider, M., Volkov, I. O., Noh, M. D., Garell, P. C., & Howard, M. a. (1999). Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex. Journal of Neurophysiology, 82(5), 2346–2357.  https://doi.org/10.1016/j.heares.2009.04.010 CrossRefGoogle Scholar
  53. Stevens, K. N., & Klatt, D. H. (1974). Role of formant transitions in the voiced-voiceless distinction for stops. The Journal of the Acoustical Society of America, 55(3), 653–659.  https://doi.org/10.1121/1.1914578 CrossRefGoogle Scholar
  54. Volaitis, L. E., & Miller, J. L. (1992). Phonetic prototypes: Influence of place of articulation and speaking rate on the internal structure of voicing categories. The Journal of the Acoustical Society of America, 92(2), 723–735.  https://doi.org/10.1121/1.403997 CrossRefGoogle Scholar
  55. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.CrossRefGoogle Scholar
  56. Winkler, I., Cowan, N., Csépe, V., Czigler, I., & Näätänen, R. (1996a). Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity. Journal of Cognitive Neuroscience, 8, 403–415.CrossRefGoogle Scholar
  57. Winkler, I., Czigler, I., Sussman, E., Horváth, J., & Balázs, L. (2005). Preattentive Binding of Auditory and Visual Stimulus Features Preattentive Binding of Auditory and Visual Stimulus Features. Journal of Cognitive Neuroscience, 17(March), 320–339.  https://doi.org/10.1162/0898929053124866 CrossRefGoogle Scholar
  58. Winkler, I., Karmos, G., & Näätänen, R. (1996b). Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential, 742, 239–252.Google Scholar
  59. Winkler, I., Kujala, T., Tiitinen, H., Alku, P., Lehtokoski, A., Ilmoniemi, R. J., … Näätänen, R. (1999). Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 36, 638–642.CrossRefGoogle Scholar
  60. Winkler, I., Schröger, E., & Cowan, N. (2001). The role of large-scale memory organization in the mismatch negativity event-related brain potential. Journal of Cognitive Neuroscience, 13(1), 59–71.  https://doi.org/10.1162/089892901564171 CrossRefGoogle Scholar
  61. Wolff, C., & Schröger, E. (2001). Human pre-attentive auditory change-detection with single, double, and triple deviations as revealed by mismatch negativity additivity. Neuroscience Letters, 311, 37–40.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Linguistics and Cognitive ScienceUniversity of DelawareNewarkUSA

Personalised recommendations