Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 119–136 | Cite as

Alertness and cognitive control: Is there a spatial attention constraint?

  • Darryl W. SchneiderEmail author
Article
  • 163 Downloads

Abstract

Congruency effects in arrow flanker tasks are often larger when subjects are more alert, suggesting an unusual connection between alertness and cognitive control. Theoretical accounts of the alerting–congruency interaction differ with respect to whether and how spatial attention is involved. In the present study, the author conducted eight experiments to determine whether there is a spatial attention constraint linking alertness to cognitive control. Alertness was manipulated in color-word Stroop tasks involving stimuli that were spatially integrated (Experiments 1–3) or separated (Experiments 4 and 5), as well as in Stroop-like tasks involving spatially separated stimuli for which the irrelevant stimulus features were spatial words (Experiments 6 and 7) or arrows (Experiment 8). All experiments yielded effects of alerting and congruency, but none produced the alerting–congruency interaction typically found with arrow flanker tasks. The results suggest that there is a spatial attention constraint on the relationship between alertness and cognitive control, part of which might involve having a task goal associated with spatial information processing.

Keywords

Alertness Cognitive control Selective attention Spatial attention Stroop task 

References

  1. Böckler, A., Alpay, G., & Stürmer, B. (2011). Accessory stimuli affect the emergence of conflict, not conflict control: A Simon-task ERP study. Experimental Psychology, 58, 102–109.CrossRefGoogle Scholar
  2. Callejas, A., Lupiáñez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting, and executive control networks. Experimental Brain Research, 167, 27–37.CrossRefGoogle Scholar
  3. Callejas, A., Lupiáñez, J., & Tudela, P. (2004). The three attentional networks: On their independence and interactions. Brain and Cognition, 54, 225–227.CrossRefGoogle Scholar
  4. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  5. Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York, NY: Routledge.Google Scholar
  6. Dunbar, K., & MacLeod, C. M. (1984). A horse race of a different color: Stroop interference patterns with transformed words. Journal of Experimental Psychology: Human Perception and Performance, 10, 622–639.Google Scholar
  7. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.CrossRefGoogle Scholar
  8. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.CrossRefGoogle Scholar
  9. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.CrossRefGoogle Scholar
  10. Federico, F., Marotta, A., Adriani, T., Maccari, L., & Casagrande, M. (2013). Attention network test—The impact of social information on executive control, alerting and orienting. Acta Psychologica, 143, 65–70.CrossRefGoogle Scholar
  11. Federico, F., Marotta, A., Martella, D., & Casagrande, M. (2017). Development in attention functions and social processing: Evidence from the Attention Network Test. British Journal of Developmental Psychology, 35, 169–185.CrossRefGoogle Scholar
  12. Fischer, R., Plessow, F., & Kiesel, A. (2010). Auditory warning signals affect mechanisms of response selection: Evidence from a Simon task. Experimental Psychology, 57, 89–97.CrossRefGoogle Scholar
  13. Fischer, R., Plessow, F., & Kiesel, A. (2012). The effects of alerting signals in action control: Activation of S–R associations or inhibition of executive control processes? Psychological Research, 76, 317–328.CrossRefGoogle Scholar
  14. Francis, G. (2012). Publication bias and the failure of replication in experimental psychology. Psychonomic Bulletin & Review, 19, 975–991.CrossRefGoogle Scholar
  15. Francis, G. (2014). The frequency of excess success for articles in Psychological Science. Psychonomic Bulletin & Review, 21, 1180–1187.CrossRefGoogle Scholar
  16. Francis, G., Tanzman, J., & Matthews, W. J. (2014). Excess success for psychology articles in the journal Science. PLOS ONE, 9(12), e114255.CrossRefGoogle Scholar
  17. Gatti, S. V., & Egeth, H. E. (1978). Failure of spatial selectivity in vision. Bulletin of the Psychonomic Society, 11, 181–184.CrossRefGoogle Scholar
  18. Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331–344.Google Scholar
  19. Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: Individual differences in visual attention control. Journal of Experimental Psychology: General, 136, 217–240.CrossRefGoogle Scholar
  20. Held, L., & Ott, M. (2018). On p-values and Bayes factors. Annual Review of Statistics and Its Application, 5, 393–419.CrossRefGoogle Scholar
  21. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12, 360–365.CrossRefGoogle Scholar
  22. Ioannidis, J. P. A., & Trikalinos, T. A. (2007). An exploratory test for an excess of significant findings. Clinical Trials, 4, 245–253.CrossRefGoogle Scholar
  23. Ishigami, Y., & Klein, R. M. (2015). Repeated measurement of the components of attention with young children using the Attention Network Test: Stability, isolability, robustness, and reliability. Journal of Cognition and Development, 16, 144–159.CrossRefGoogle Scholar
  24. Johnson, A., & Proctor, R. W. (2004). Attention: Theory and practice. Thousand Oaks, CA: SAGE.CrossRefGoogle Scholar
  25. Klein, R. M., & Ivanoff, J. (2011). The components of visual attention and the ubiquitous Simon effect. Acta Psychologica, 136, 225–234.CrossRefGoogle Scholar
  26. LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9, 371–379.Google Scholar
  27. Logan, G. D. (1996). The CODE theory of visual attention: An integration of space-based and object-based attention. Psychological Review, 103, 603–649.CrossRefGoogle Scholar
  28. Lu, C.-H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174–207.CrossRefGoogle Scholar
  29. Lukas, S., Philipp, A. M., & Koch, I. (2010). The role of preparation and cue-modality in crossmodal task switching. Acta Psychologica, 134, 318–322.CrossRefGoogle Scholar
  30. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.CrossRefGoogle Scholar
  31. MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, R. M., & Shore, D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology, 24, 637–651.CrossRefGoogle Scholar
  32. Mather, M., & Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science, 6, 114–133.CrossRefGoogle Scholar
  33. McClain, L. (1983). Effects of response type and set size on Stroop color-word performance. Perceptual and Motor Skills, 56, 735–743.CrossRefGoogle Scholar
  34. McConnell, M. M., & Shore, D. I. (2011). Mixing measures: Testing an assumption of the attention network test. Attention, Perception, & Psychophysics, 73, 1096–1107.CrossRefGoogle Scholar
  35. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353–383.CrossRefGoogle Scholar
  36. Nieuwenhuis, S., & de Kleijn, R. (2013). The impact of alertness on cognitive control. Journal of Experimental Psychology: Human Perception and Performance, 39, 1797–1801.Google Scholar
  37. Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716.CrossRefGoogle Scholar
  38. Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.Google Scholar
  39. Pashler, H. E. (1998). The psychology of attention. Cambridge, MA: MIT Press.Google Scholar
  40. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.CrossRefGoogle Scholar
  41. Posner, M. I. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129, 193–199.Google Scholar
  42. Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408.CrossRefGoogle Scholar
  43. Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. (2010). Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. Attention, Perception, & Psychophysics, 72, 2013–2025.CrossRefGoogle Scholar
  44. Quinlan, P. T., & Hill, N. I. (1999). Sequential effects in rudimentary auditory and visual tasks. Perception & Psychophysics, 61, 375–384.CrossRefGoogle Scholar
  45. Redick, T. S., & Engle, R. W. (2006). Working memory capacity and attention network test performance. Applied Cognitive Psychology, 20, 713–721.CrossRefGoogle Scholar
  46. Robertson, I. H., Mattingley, J. B., Rorden, C., & Driver, J. (1998). Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature, 395, 169–172.CrossRefGoogle Scholar
  47. Rolke, B., & Hofmann, P. (2007). Temporal uncertainty degrades perceptual processing. Psychonomic Bulletin & Review, 14, 522–526.CrossRefGoogle Scholar
  48. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237.CrossRefGoogle Scholar
  49. Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Pappert Lercari, L., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 1029–1040.CrossRefGoogle Scholar
  50. Schneider, D. W. (2018a). Alertness and cognitive control: Testing the early onset hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 44, 756–766.Google Scholar
  51. Schneider, D. W. (2018b). Alertness and cognitive control: Toward a spatial grouping hypothesis. Attention, Perception, & Psychophysics, 80, 913–928.CrossRefGoogle Scholar
  52. Schneider, D. W. (2018c). [Spatial alignment effects in the flanker task]. Unpublished raw data.Google Scholar
  53. Schönbrodt, F. D., & Wagenmakers, E.-J. (2018). Bayes factor design analysis: Planning for compelling evidence. Psychonomic Bulletin & Review, 25, 128–142.CrossRefGoogle Scholar
  54. Seibold, V. C. (2018). Do alerting signals increase the size of the attentional focus? Attention, Perception, & Psychophysics, 80, 402–425.CrossRefGoogle Scholar
  55. Seifried, T., Ulrich, R., Bausenhart, K. M., Rolke, B., & Osman, A. (2010). Temporal preparation decreases perceptual latency: Evidence from a clock paradigm. Quarterly Journal of Experimental Psychology, 63, 2432–2451.CrossRefGoogle Scholar
  56. Simon, J. R., & Small, A. M. (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied Psychology, 53, 433–435.CrossRefGoogle Scholar
  57. Smith, P. L., & Ratcliff, R. (2015). Diffusion and random walk processes. In J. D. Wright (Ed.), International encyclopedia of the social and behavioral sciences (2nd ed., Vol. 6, pp. 395–401). Oxford, UK: Elsevier.Google Scholar
  58. Soutschek, A., Müller, H. J., & Schubert, T. (2013). Conflict-specific effects of accessory stimuli on cognitive control in the Stroop task and the Simon task. Experimental Psychology, 60, 140–147.CrossRefGoogle Scholar
  59. Spagna, A., Martella, D., Sebastiani, M., Maccari, L., Marotta, A., & Casagrande, M. (2014). Efficiency and interactions of alerting, orienting and executive networks: The impact of imperative stimulus type. Acta Psychologica, 148, 209–215.CrossRefGoogle Scholar
  60. Spencer, K. M., & Coles, M. G. H. (1999). The lateralized readiness potential: Relationship between human data and response activation in a connectionist model. Psychophysiology, 36, 364–370.CrossRefGoogle Scholar
  61. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  62. Tipples, J. (2002). Eye gaze is not unique: Automatic orienting in response to uninformative arrows. Psychonomic Bulletin & Review, 9, 314–318.CrossRefGoogle Scholar
  63. Wagenmakers, E.-J., & Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time distribution. Psychological Review, 114, 830–841.CrossRefGoogle Scholar
  64. Warren, C. M., Murphy, P. R., & Nieuwenhuis, S. (2016). Cognitive control, dynamic salience, and the imperative toward computational accounts of neuromodulatory function. Behavioral and Brain Sciences, 39, 45–46.CrossRefGoogle Scholar
  65. Weinbach, N., & Henik, A. (2011). Phasic alertness can modulate executive control by enhancing global processing of visual stimuli. Cognition, 121, 454–458.CrossRefGoogle Scholar
  66. Weinbach, N., & Henik, A. (2012). The relationship between alertness and executive control. Journal of Experimental Psychology: Human Perception and Performance, 38, 1530–1540.Google Scholar
  67. Weinbach, N., & Henik, A. (2014). Alerting enhances attentional bias for salient stimuli: Evidence from a global/local processing task. Cognition, 133, 414–419.CrossRefGoogle Scholar
  68. White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63, 210–238.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of Psychological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations