Advertisement

Attention, Perception, & Psychophysics

, Volume 80, Issue 5, pp 1240–1249 | Cite as

Cross-modal attentional entrainment: Insights from magicians

  • Anthony S. Barnhart
  • Mandy J. Ehlert
  • Stephen D. Goldinger
  • Alison D. Mackey
Article

Abstract

Recently, performance magic has become a source of insight into the processes underlying awareness. Magicians have highlighted a set of variables that can create moments of visual attentional suppression, which they call “off-beats.” One of these variables is akin to the phenomenon psychologists know as attentional entrainment. The current experiments, inspired by performance magic, explore the extent to which entrainment can occur across sensory modalities. Across two experiments using a difficult dot probe detection task, we find that the mere presence of an auditory rhythm can bias when visual attention is deployed, speeding responses to stimuli appearing in phase with the rhythm. However, the extent of this cross-modal influence is moderated by factors such as the speed of the entrainers and whether their frequency is increasing or decreasing. In Experiment 1, entrainment occurred for rhythms presented at .67 Hz, but not at 1.5 Hz. In Experiment 2, entrainment only occurred for rhythms that were slowing from 1.5 Hz to .67 Hz, not speeding. The results of these experiments challenge current models of temporal attention.

Keywords

Attention Entrainment Cross-modal Rhythm Magic 

References

  1. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412. doi: https://doi.org/10.1016/j.jml.2007.12.005 CrossRefGoogle Scholar
  2. Barnhart, A. S. & Goldinger, S. D. (2014). Blinded by magic: Eye-movements reveal the misdirection of attention. Frontiers in Psychology, 5, 1461. doi: https://doi.org/10.3389/fpsyg.2014.01461 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. doi: https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  4. Cope, T., Grube, M., & Griffiths, T. (2012). Temporal predictions basedon a gradual change in tempo. Acoustical Society of America, 131, 4013-4022. doi: https://doi.org/10.1121/1.3699266 CrossRefGoogle Scholar
  5. R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ Google Scholar
  6. Dessoir, M. (1893). The psychology of legerdemain III. The Open Court, 14(293), 3616-3619.Google Scholar
  7. Ekroll, V. & Wagemans, J. (2016). Conjuring deceptions: Fooling the eye or fooling the mind? Trends in Cognitive Sciences, 20, 486-489. doi: https://doi.org/10.1016/j.tics.2016.04.006 CrossRefPubMedGoogle Scholar
  8. Escoffier, N., Sheng, D. Y., & Schirmer, A. (2010). Unattended musical beats enhance visual processing. Acta Psychologica, 135, 12-16. doi: https://doi.org/10.1016/j.actpsy.2010.04.005 CrossRefPubMedGoogle Scholar
  9. Fernandez-Duque, D. & Johnson, M. L. (1999). Attention metaphors: How metaphors guide the cognitive psychology of attention. Cognitive Science, 23, 83-116. doi: https://doi.org/10.1016/S0364-0213(99)80053-6 CrossRefGoogle Scholar
  10. Gomez-Ramirez, M., Kelly, S. P., Molholm, S., Sehatpour, P., Schwartz, T. H., & Foxe, J. J. (2011). Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs: A human electrocorticographic investigation. Journal of Neuroscience, 31, 18556-18567. doi: https://doi.org/10.1523/JNEUROSCI.2164-11.2011 CrossRefPubMedGoogle Scholar
  11. Hickok, G., Farahbod, H., & Saberi, K. (2015). The rhythm of perception: Entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychological Science, 26, 1006-1013. doi: https://doi.org/10.1177/0956797615576533 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jack, C. E. & Thurlow, W. R. (1973). Effects of degree of visual association and angle of displacement on the "ventriloquism" effect. Perceptual and Motor Skills, 37, 967-979.PubMedGoogle Scholar
  13. Jones, A. (2015). Independent effeccts of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing. Frontiers in Integrative Neuroscience, 8, 96. doi: https://doi.org/10.3389/fnint.2014.00096 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313-319. doi: https://doi.org/10.1111/1467-9280.00458 CrossRefPubMedGoogle Scholar
  15. Jongsma, M., Meeuwissen, E., Vos, P., & Maes, R. (2007). Rhythm perception: Speeding up or slowing down affects different subcomponents of the ERP P3 complex. Biological Psychology, 75, 219-228. doi: https://doi.org/10.1016/j.biopsycho.2007.02.003 CrossRefPubMedGoogle Scholar
  16. Kaufman, R. (1989). Williamson's Wonders. Kaufman and Greenberg.Google Scholar
  17. Kizuk, S. A. & Mathewson, K. E. (2017). Power and phase of alpha oscillations reveal an interaction between spatial and temporal visual attention. Journal of Cognitive Neuroscience, 29, 480-494. doi: https://doi.org/10.1162/jocn_a_01058 CrossRefPubMedGoogle Scholar
  18. Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430-431. doi: https://doi.org/10.1038/334430a0 CrossRefPubMedGoogle Scholar
  19. Kuhn, G. & Martinez, L. M. (2012). Misdirection -- past, present, and the future. Frontiers in Human Neuroscience, 5, 1-7. doi: https://doi.org/10.3389/fnhum.2011.00172 CrossRefGoogle Scholar
  20. Kuhn, G. & Teszka, R. (2015). Attention and misdirection: How to use conjuring experience to study attentional processes. In J. M. Fawcett, E. F. Risko, & A. Kingstone, The handbook of attention (pp. 503-525). Cambridge, Massachusetts: MIT Press.Google Scholar
  21. Kurtz, G. (1998). Leading with your head: Psychological and directional keys to the amplification of the magic effect. Montreal: self-published.Google Scholar
  22. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320, 110-113. doi: https://doi.org/10.1126/science.1154735 CrossRefPubMedGoogle Scholar
  23. Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94, 1904-1911. doi: https://doi.org/10.1152/jn.00263.2005 CrossRefPubMedGoogle Scholar
  24. Lamont, P. & Wiseman, R. (1999). Magic in theory: An introduction to the theoretical and psychological elements of conjuring. Hertfordshire: University of Hertfordshire Press.Google Scholar
  25. Landau, A. N. & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22, 1000-1004. doi: https://doi.org/10.1016/j.cub.2012.03.054 CrossRefPubMedGoogle Scholar
  26. Large, E. W. & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119-159. doi: https://doi.org/10.1037/0033-295X.106.1.119 CrossRefGoogle Scholar
  27. Lawrance, E. L., Harper, N. S., Cooke, J. E., & Schnupp, J. W. (2014). Temporal predictability enhances auditory detection. The Journal of the Acoustical Society of America, 135, EL357-EL363. doi: https://doi.org/10.1121/1.4879667 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Levin, D. T. & Saylor, M. M. (2008). Shining spotlights, zooming lenses, grabbing hands, and pecking chickens: The ebb and flow of attention during events. In T. F. Shipley, & J. M. Zacks (Eds.), Understanding events (pp. 522-554). New York: Oxford University Press, Inc.CrossRefGoogle Scholar
  29. Luo, H. & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001-1010. doi: https://doi.org/10.1016/j.neuron.2007.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  30. MacDonald, J. & McGurk, H. (1978). Visual influences on speech perception processes. Perception & Psychophysics, 24, 253-257. doi: https://doi.org/10.3758/BF03206096 CrossRefGoogle Scholar
  31. Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A. (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115, 186-191. doi: https://doi.org/10.1016/j.cognition.2009.11.010 CrossRefPubMedGoogle Scholar
  32. Miller, J. E., Carlson, L. A., & McAuley, J. D. (2013). When what you hear influences when you see: Listening to an auditory rhythm influences the temporal allocation of visual attention. Psychological Science, 24, 11-18. doi: https://doi.org/10.1177/0956797612446707 CrossRefPubMedGoogle Scholar
  33. Nobre, A. D. & van Ede, F. (2017). Anticipated moments: Temporal structure in attention. Nature Reviews Neuroscience, Advance online publication. doi: https://doi.org/10.1038/nrn.2017.141
  34. Olivers, C. N. & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115, 836-863. doi: https://doi.org/10.1037/a0013395 CrossRefPubMedGoogle Scholar
  35. Posner, M. I. & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1-23. doi: https://doi.org/10.1146/annurev.psych.58.110405.085516 CrossRefPubMedGoogle Scholar
  36. Quian Quiroga, R. (2016). Magic and cognitive neuroscience. Current Biology, 26, R390-R394. doi: https://doi.org/10.1016/j.cub.2016.03.061 CrossRefGoogle Scholar
  37. Rensink, R. A. & Kuhn, G. (2015). A framework for using magic to study the mind. Frontiers in Psychology, 5, 1508. doi: https://doi.org/10.3389/fpsyg.2014.01508 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Repp, B. & Keller, P. (2004). Adaptations to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness. The Quarterly Journal of Experimental Psychology, 57A, 499-521. doi: https://doi.org/10.1080/02724980343000369 CrossRefGoogle Scholar
  39. Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal expectation improves the quality of sensory information. Journal of Neuroscience, 32, 8424-8428. doi: https://doi.org/10.1523/JNEUROSCI.0804-12.2012 CrossRefPubMedGoogle Scholar
  40. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime User's Guide. Pittsburgh: Psychology Software Tools Inc.Google Scholar
  41. Schroeder, C. E. & Lakatos, P. (2008). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32, 9-18. doi: https://doi.org/10.1016/j.tins.2008.09.012 CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Anthony S. Barnhart
    • 1
  • Mandy J. Ehlert
    • 1
  • Stephen D. Goldinger
    • 2
  • Alison D. Mackey
    • 1
  1. 1.Department of Psychological ScienceCarthage CollegeKenoshaUSA
  2. 2.Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations