Cross-modal attentional entrainment: Insights from magicians

  • Anthony S. Barnhart
  • Mandy J. Ehlert
  • Stephen D. Goldinger
  • Alison D. Mackey


Recently, performance magic has become a source of insight into the processes underlying awareness. Magicians have highlighted a set of variables that can create moments of visual attentional suppression, which they call “off-beats.” One of these variables is akin to the phenomenon psychologists know as attentional entrainment. The current experiments, inspired by performance magic, explore the extent to which entrainment can occur across sensory modalities. Across two experiments using a difficult dot probe detection task, we find that the mere presence of an auditory rhythm can bias when visual attention is deployed, speeding responses to stimuli appearing in phase with the rhythm. However, the extent of this cross-modal influence is moderated by factors such as the speed of the entrainers and whether their frequency is increasing or decreasing. In Experiment 1, entrainment occurred for rhythms presented at .67 Hz, but not at 1.5 Hz. In Experiment 2, entrainment only occurred for rhythms that were slowing from 1.5 Hz to .67 Hz, not speeding. The results of these experiments challenge current models of temporal attention.


Attention Entrainment Cross-modal Rhythm Magic 


  1. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412. doi: CrossRefGoogle Scholar
  2. Barnhart, A. S. & Goldinger, S. D. (2014). Blinded by magic: Eye-movements reveal the misdirection of attention. Frontiers in Psychology, 5, 1461. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. doi: CrossRefGoogle Scholar
  4. Cope, T., Grube, M., & Griffiths, T. (2012). Temporal predictions basedon a gradual change in tempo. Acoustical Society of America, 131, 4013-4022. doi: CrossRefGoogle Scholar
  5. R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from Google Scholar
  6. Dessoir, M. (1893). The psychology of legerdemain III. The Open Court, 14(293), 3616-3619.Google Scholar
  7. Ekroll, V. & Wagemans, J. (2016). Conjuring deceptions: Fooling the eye or fooling the mind? Trends in Cognitive Sciences, 20, 486-489. doi: CrossRefPubMedGoogle Scholar
  8. Escoffier, N., Sheng, D. Y., & Schirmer, A. (2010). Unattended musical beats enhance visual processing. Acta Psychologica, 135, 12-16. doi: CrossRefPubMedGoogle Scholar
  9. Fernandez-Duque, D. & Johnson, M. L. (1999). Attention metaphors: How metaphors guide the cognitive psychology of attention. Cognitive Science, 23, 83-116. doi: CrossRefGoogle Scholar
  10. Gomez-Ramirez, M., Kelly, S. P., Molholm, S., Sehatpour, P., Schwartz, T. H., & Foxe, J. J. (2011). Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs: A human electrocorticographic investigation. Journal of Neuroscience, 31, 18556-18567. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hickok, G., Farahbod, H., & Saberi, K. (2015). The rhythm of perception: Entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychological Science, 26, 1006-1013. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jack, C. E. & Thurlow, W. R. (1973). Effects of degree of visual association and angle of displacement on the "ventriloquism" effect. Perceptual and Motor Skills, 37, 967-979.CrossRefPubMedGoogle Scholar
  13. Jones, A. (2015). Independent effeccts of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing. Frontiers in Integrative Neuroscience, 8, 96. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313-319. doi: CrossRefPubMedGoogle Scholar
  15. Jongsma, M., Meeuwissen, E., Vos, P., & Maes, R. (2007). Rhythm perception: Speeding up or slowing down affects different subcomponents of the ERP P3 complex. Biological Psychology, 75, 219-228. doi: CrossRefPubMedGoogle Scholar
  16. Kaufman, R. (1989). Williamson's Wonders. Kaufman and Greenberg.Google Scholar
  17. Kizuk, S. A. & Mathewson, K. E. (2017). Power and phase of alpha oscillations reveal an interaction between spatial and temporal visual attention. Journal of Cognitive Neuroscience, 29, 480-494. doi: CrossRefPubMedGoogle Scholar
  18. Klein, R. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430-431. doi: CrossRefPubMedGoogle Scholar
  19. Kuhn, G. & Martinez, L. M. (2012). Misdirection -- past, present, and the future. Frontiers in Human Neuroscience, 5, 1-7. doi: CrossRefGoogle Scholar
  20. Kuhn, G. & Teszka, R. (2015). Attention and misdirection: How to use conjuring experience to study attentional processes. In J. M. Fawcett, E. F. Risko, & A. Kingstone, The handbook of attention (pp. 503-525). Cambridge, Massachusetts: MIT Press.Google Scholar
  21. Kurtz, G. (1998). Leading with your head: Psychological and directional keys to the amplification of the magic effect. Montreal: self-published.Google Scholar
  22. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320, 110-113. doi: CrossRefPubMedGoogle Scholar
  23. Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94, 1904-1911. doi: CrossRefPubMedGoogle Scholar
  24. Lamont, P. & Wiseman, R. (1999). Magic in theory: An introduction to the theoretical and psychological elements of conjuring. Hertfordshire: University of Hertfordshire Press.Google Scholar
  25. Landau, A. N. & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22, 1000-1004. doi: CrossRefPubMedGoogle Scholar
  26. Large, E. W. & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119-159. doi: CrossRefGoogle Scholar
  27. Lawrance, E. L., Harper, N. S., Cooke, J. E., & Schnupp, J. W. (2014). Temporal predictability enhances auditory detection. The Journal of the Acoustical Society of America, 135, EL357-EL363. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  28. Levin, D. T. & Saylor, M. M. (2008). Shining spotlights, zooming lenses, grabbing hands, and pecking chickens: The ebb and flow of attention during events. In T. F. Shipley, & J. M. Zacks (Eds.), Understanding events (pp. 522-554). New York: Oxford University Press, Inc.CrossRefGoogle Scholar
  29. Luo, H. & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001-1010. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  30. MacDonald, J. & McGurk, H. (1978). Visual influences on speech perception processes. Perception & Psychophysics, 24, 253-257. doi: CrossRefGoogle Scholar
  31. Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A. (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115, 186-191. doi: CrossRefPubMedGoogle Scholar
  32. Miller, J. E., Carlson, L. A., & McAuley, J. D. (2013). When what you hear influences when you see: Listening to an auditory rhythm influences the temporal allocation of visual attention. Psychological Science, 24, 11-18. doi: CrossRefPubMedGoogle Scholar
  33. Nobre, A. D. & van Ede, F. (2017). Anticipated moments: Temporal structure in attention. Nature Reviews Neuroscience, Advance online publication. doi:
  34. Olivers, C. N. & Meeter, M. (2008). A boost and bounce theory of temporal attention. Psychological Review, 115, 836-863. doi: CrossRefPubMedGoogle Scholar
  35. Posner, M. I. & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1-23. doi: CrossRefPubMedGoogle Scholar
  36. Quian Quiroga, R. (2016). Magic and cognitive neuroscience. Current Biology, 26, R390-R394. doi: CrossRefGoogle Scholar
  37. Rensink, R. A. & Kuhn, G. (2015). A framework for using magic to study the mind. Frontiers in Psychology, 5, 1508. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  38. Repp, B. & Keller, P. (2004). Adaptations to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness. The Quarterly Journal of Experimental Psychology, 57A, 499-521. doi: CrossRefGoogle Scholar
  39. Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal expectation improves the quality of sensory information. Journal of Neuroscience, 32, 8424-8428. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime User's Guide. Pittsburgh: Psychology Software Tools Inc.Google Scholar
  41. Schroeder, C. E. & Lakatos, P. (2008). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32, 9-18. doi: CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Anthony S. Barnhart
    • 1
  • Mandy J. Ehlert
    • 1
  • Stephen D. Goldinger
    • 2
  • Alison D. Mackey
    • 1
  1. 1.Department of Psychological ScienceCarthage CollegeKenoshaUSA
  2. 2.Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations