Attention, Perception, & Psychophysics

, Volume 79, Issue 7, pp 2132–2142 | Cite as

What or when? The impact of anticipated social action effects is driven by action-effect compatibility, not delay

Article

Abstract

Motor actions are facilitated if they are foreseeably being imitated rather than counterimitated by social partners. Such beneficial effects of anticipated imitation have been explained in terms of compatibility between one’s own actions and their anticipated consequences. Previous demonstrations of these effects might alternatively be explained by consistently faster partner responses for imitative than for nonimitative actions, however. This study contrasts both explanations by using virtual coactors to disentangle the contributions of anticipated action-effect compatibility and anticipated action-effect delay. The data of two experiments support previous theoretical assumptions by showing that the effects of anticipated imitation are indeed driven by compatibility rather than delay.

Keywords

Action control Social interaction Ideomotor theory Action-effect compatibility Delay 

Notes

Compliance with ethical standards

Ethical approval

All procedures were in accordance with the ethical standards of the institutional ethics committee and with the 1964 Helsinki declaration and its later amendments.

Funding

This work was supported by the German Research Council (Deutsche Forschungsgemeinschaft; DFG) to R.P. (PF 853/2-1) and W.K. (KU 1964/14-1).

Data availability

Stimulus materials, raw data, and analysis scripts are available on the Open Science Framework (https://osf.io/xket7/).

References

  1. Ansorge, U. (2002). Spatial intention–response compatibility. Acta Psychologica, 109, 285–299.CrossRefPubMedGoogle Scholar
  2. Aschersleben, G., & Prinz, W. (1997). Delayed auditory feedback in synchronization. Journal of Motor Behavior, 29(1), 35–46.CrossRefPubMedGoogle Scholar
  3. Atmaca, S., Sebanz, N., & Knoblich, G. (2011). The joint flanker effect: Sharing tasks with real and imagined co-actors. Experimental Brain Research, 211, 371–385.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailenson, J. N., & Yee, N. (2005). Digital chameleons automatic assimilation of nonverbal gestures in immersive virtual environments. Psychological Science, 16(10), 814–819.CrossRefPubMedGoogle Scholar
  5. Bernieri, F. J., & Rosenthal, R. (1991). Interpersonal coordination: Behavior matching and interactional synchrony. In R. S. Feldman & B. Rimé (Eds.), Fundamentals of nonverbal behavior (pp. 401–432). New York: Cambridge University Press.Google Scholar
  6. Bertenthal, B. I., Longo, M. R., & Kosobud, A. (2006). Imitative response tendencies following observation of intransitive actions. Journal of Experimental Psychology: Human Perception and Performance, 32, 210–225.PubMedGoogle Scholar
  7. Böckler, A., Knoblich, G., & Sebanz, N. (2012). Effects of a coactor’s focus of attention on task performance. Journal of Experimental Psychology: Human Perception and Performance, 38, 1404–1415.PubMedGoogle Scholar
  8. Boyer, T. W., Longo, M. R., & Bertenthal, B. I. (2012). Is automatic imitation a specialized form of stimulus–response compatibility? Dissociating imitative and spatial compatibilities. Acta Psychologica, 139(3), 440–448.CrossRefPubMedGoogle Scholar
  9. Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124–143.CrossRefPubMedGoogle Scholar
  10. Catmur, C., & Heyes, C. (2011). Time course analyses confirm independence of imitative and spatial compatibility. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 409–421. doi: 10.1037/a0019325 PubMedGoogle Scholar
  11. Chen, J., & Proctor, R. W. (2013). Response–effect compatibility defines the natural scrolling direction. Human Factors, 55(6), 1112–1129.CrossRefPubMedGoogle Scholar
  12. Dignath, D., & Janczyk, M. (2017). Anticipation of delayed action-effects: Learning when an effect occurs, without knowing what this effect will be. Psychological Research. Google Scholar
  13. Dignath, D., Pfister, R., Eder, A. B., Kiesel, A., & Kunde, W. (2014). Representing the hyphen in action–effect associations: Automatic acquisition and bidirectional retrieval of action–effect intervals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1701–1712. doi: 10.1037/xlm0000022 PubMedGoogle Scholar
  14. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 229–240. doi: 10.1037/0096-1523.27.1.229 PubMedGoogle Scholar
  15. Elsner, B., & Hommel, B. (2004). Contiguity and contingency in action–effect learning. Psychological Research, 68, 138–154.CrossRefPubMedGoogle Scholar
  16. Flach, R., Press, C., Badets, A., & Heyes, C. (2010). Shaking hands: Priming by social action effects. British Journal of Psychology, 101(4), 739–749.CrossRefPubMedGoogle Scholar
  17. Frings, C., Schneider, K. K., & Fox, E. (2015). The negative priming paradigm: An update and implications for selective attention. Psychonomic Bulletin & Review, 22(6), 1577–1597.CrossRefGoogle Scholar
  18. Haering, C., & Kiesel, A. (2012). Time in action contexts: Learning when an action effect occurs. Psychological Research, 76(3), 336–344. doi: 10.1007/s00426-011-0341-8 CrossRefPubMedGoogle Scholar
  19. Hoffmann, J., Lenhard, A., Sebald, A., & Pfister, R. (2009). Movements or targets: What makes an action in action–effect learning? The Quarterly Journal of Experimental Psychology, 62(12), 2433–2449.CrossRefPubMedGoogle Scholar
  20. Hommel, B. (1993). Inverting the Simon effect by intention. Psychological Research, 55(4), 270–279.CrossRefGoogle Scholar
  21. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512–526.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hommel, B. (2013). Ideomotor action control: On the perceptual grounding of voluntary actions and agents. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 113–136). Cambridge: MIT Press.Google Scholar
  23. Janczyk, M., Yamaguchi, M., Proctor, R. W., & Pfister, R. (2015). Response-effect compatibility with complex actions: The case of wheel rotations. Attention, Perception, & Psychophysics, 77(3), 930–940.CrossRefGoogle Scholar
  24. Kane, M. J., May, C. P., Hasher, L., Rahhal, T., & Stoltzfus, E. R. (1997). Dual mechanisms of negative priming. Journal of Experimental Psychology: Human Perception and Performance, 23, 632–650.PubMedGoogle Scholar
  25. Keller, P. E., & Koch, I. (2006). Exogenous and endogenous response priming with auditory stimuli. Advances in Cognitive Psychology, 2(4), 269–276.CrossRefGoogle Scholar
  26. Kiesel, A., & Hoffmann, J. (2004). Variable action effects: Response control by context-specific effect anticipations. Psychological Research, 68(2/3), 155–162.CrossRefPubMedGoogle Scholar
  27. Klapp, S. T. (1995). Motor response programming during simple choice reaction time: The role of practice. Journal of Experimental Psychology: Human Perception and Performance, 21(5), 1015–1027.Google Scholar
  28. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility: A model and taxonomy. Psychological Review, 97(2), 253–270.CrossRefPubMedGoogle Scholar
  29. Kourtis, D., Sebanz, N., & Knoblich, G. (2010). Favouritism in the motor system: Social interaction modulates action simulation. Biology Letters, 6(6), 758–761.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 387–394. doi: 10.1037//0096-1523.27.2.387 PubMedGoogle Scholar
  31. Kunde, W. (2003). Temporal response–effect compatibility. Psychological Research, 67, 153–159.CrossRefPubMedGoogle Scholar
  32. Kunde, W., Hoffmann, J., & Zellmann, P. (2002). The impact of anticipated action effects on action planning. Acta Psychologica, 109(2), 137–155.CrossRefPubMedGoogle Scholar
  33. Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation, and execution of actions. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 57, 87–106.CrossRefGoogle Scholar
  34. Kunde, W., Lozo, L., & Neumann, R. (2011). Effect-based control of facial expressions. Evidence from action-effect compatibility. Psychonomic Bulletin & Review, 18, 820–826.CrossRefGoogle Scholar
  35. Kunde, W., & Stöcker, C. (2002). A Simon effect for stimulus–response duration. The Quarterly Journal of Experimental Psychology. A, 55(2), 581–592.CrossRefGoogle Scholar
  36. Kunde, W., Weller, L., & Pfister, R. (2017). Sociomotor action control. Psychonomic Bulletin & Review. doi: 10.3758/s13423-017-1316-6 Google Scholar
  37. Lelonkiewicz, J. R., & Gambi, C. (2016). Spontaneous adaptation explains why people act faster when being imitated. Psychonomic Bulletin & Review. doi: 10.3758/s13423-016-1141-3 Google Scholar
  38. Longo, M. R., & Bertenthal, B. I. (2009). Attention modulates the specificity of automatic imitation to human actors. Experimental Brain Research, 192(4), 739–744.CrossRefPubMedGoogle Scholar
  39. Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 489–501.PubMedGoogle Scholar
  40. Melcher, T., Pfister, R., Busmann, M., Schlüter, M.-C., Leyhe, T., & Gruber, O. (2015). Functional characteristics of control adaptation in intermodal sensory processing. Brain & Cognition, 96, 43–55.CrossRefGoogle Scholar
  41. Müller, R. (2016). Does the anticipation of compatible partner reactions facilitate action planning in joint tasks? Psychological Research, 80(4), 464–486.CrossRefPubMedGoogle Scholar
  42. Müsseler, J., Kunde, W., Gausepohl, D., & Heuer, H. (2008). Does a tool eliminate spatial compatibility effects? European Journal of Cognitive Psychology, 20(2), 211–231.CrossRefGoogle Scholar
  43. Nowak, K., & Biocca, F. (2003). The effect of the agency and anthropomorphism on users’ sense of telepresence, copresence, and social presence in virtual environments. Presence, 12(5), 481–494.CrossRefGoogle Scholar
  44. Pan, X., & Hamilton, A. (2015). Automatic imitation in a rich social context with virtual characters. Frontiers in Psychology, 6, 790. doi: 10.3389/fpsyg.2015.00790 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pfister, R., Dignath, D., Hommel, B., & Kunde, W. (2013). It takes two to imitate: Anticipation and imitation in social interaction. Psychological Science, 24(10), 2117–2121. doi: 10.1177/0956797613489139 CrossRefPubMedGoogle Scholar
  46. Pfister, R., Dolk, T., Prinz, W., & Kunde, W. (2014). Joint response-effect compatibility. Psychonomic Bulletin & Review, 21(3), 817–822.CrossRefGoogle Scholar
  47. Pfister, R., & Janczyk, M. (2013). Confidence intervals for two sample means: Calculation, interpretation, and a few simple rules. Advances in Cognitive Psychology, 9, 74–80.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pfister, R., Janczyk, M., Gressmann, M., Fournier, L. R., & Kunde, W. (2014). Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Experimental Brain Research, 232(2), 847–854.CrossRefPubMedGoogle Scholar
  49. Pfister, R., Janczyk, M., Wirth, R., Dignath, D., & Kunde, W. (2014). Thinking with portals: Revisiting kinematic cues to intention. Cognition, 133(2), 464–473.CrossRefPubMedGoogle Scholar
  50. Pfister, R., Kiesel, A., & Hoffmann, J. (2011). Learning at any rate: Action-effect learning for stimulus-based actions. Psychological Research, 75(1), 61–65.CrossRefPubMedGoogle Scholar
  51. Pfister, R., & Kunde, W. (2013). Dissecting the response in response–effect compatibility. Experimental Brain Research, 224(4), 647–655.CrossRefPubMedGoogle Scholar
  52. Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human Movement Science, 26(6), 867–891.CrossRefPubMedGoogle Scholar
  53. Rieger, M. (2007). Letters as visual action-effects in skilled typing. Acta Psychologica, 126(2), 138–153. doi: 10.1016/j.actpsy.2006.11.006 CrossRefPubMedGoogle Scholar
  54. Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal coordination. In A. Fuchs & C. K. Jirsa (Eds.), Coordination: Neural, behavioral and social dynamics (pp. 281–308). Berlin: Springer.CrossRefGoogle Scholar
  55. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76.CrossRefPubMedGoogle Scholar
  56. Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others’ actions: Just like one’s own? Cognition, 88, B11–B21.CrossRefPubMedGoogle Scholar
  57. Shin, Y. K., & Proctor, R. W. (2012). Testing boundary conditions of the ideomotor hypothesis using a delayed response task. Acta Psychologica, 141(3), 360–372.CrossRefPubMedGoogle Scholar
  58. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974.CrossRefPubMedGoogle Scholar
  59. Stenzel, A., & Liepelt, R. (2016). Joint Simon effects for non-human co-actors. Attention, Perception, & Psychophysics, 78(1), 143–158.CrossRefGoogle Scholar
  60. Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. The Quarterly Journal of Experimental Psychology Section A, 54, 321–343.CrossRefGoogle Scholar
  61. Watanabe, K. (2008). Behavioral speed contagion: Automatic modulation of movement timing by observation of body movements. Cognition, 106(3), 1514–1524.CrossRefPubMedGoogle Scholar
  62. Wendt, M., Luna-Rodriguez, A., & Jacobsen, T. (2012). Conflict-induced perceptual filtering. Journal of Experimental Psychology: Human Perception and Performance, 38, 675–686.PubMedGoogle Scholar
  63. Wirth, R., Janczyk, M., & Kunde, W. (2016). Effect monitoring in dual task performance. Manuscript submitted for publication.Google Scholar
  64. Wirth, R., Pfister, R., Brandes, J., & Kunde, W. (2016). Stroking me softly: Body-related effects in effect-based action control. Attention, Perception, & Psychophysics, 78(6), 1755–1770.CrossRefGoogle Scholar
  65. Wirth, R., Pfister, R., Janczyk, R., & Kunde, W. (2015). Through the portal: Effect anticipation in the central bottleneck. Acta Psychologica, 160, 141–151.CrossRefPubMedGoogle Scholar
  66. Wolfensteller, U., & Ruge, H. (2011). On the timescale of stimulus-based action–effect learning. The Quarterly Journal of Experimental Psychology, 64(7), 1273–1289.CrossRefPubMedGoogle Scholar
  67. Yamaguchi, M., & Proctor, R. W. (2011). The Simon task with multi-component responses: Two loci of response-effect compatibility. Psychological Research, 75, 214–226.CrossRefPubMedGoogle Scholar
  68. Zwosta, K., Ruge, H., & Wolfensteller, U. (2013). No anticipation without intention: Response-effect compatibility in effect-based and stimulus-based actions. Acta Psychologica, 144(3), 628–634.CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of PsychologyJulius Maximilians University of WürzburgWürzburgGermany
  2. 2.Albert Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations