Attention, Perception, & Psychophysics

, Volume 79, Issue 5, pp 1495–1505 | Cite as

Voluntary action alters the perception of visual illusions



“Intentional binding” refers to the finding that people judge voluntary actions and their effects as having occurred closer together in time than two passively observed events. If this effect reflects subjectively compressed time, then time-dependent visual illusions should be altered by voluntary initiation. To test this hypothesis, we showed participants displays that result in particular motion illusions when presented at short interstimulus intervals (ISIs). In Experiment 1 we used apparent motion, which is perceived only at very short ISIs; Experiments 2a and 2b used the Ternus display, which results in different motion illusions depending on the ISI. In support of the time compression hypothesis, when they voluntarily initiated the displays, people persisted in seeing the motion illusions associated with short ISIs at longer ISIs than had been the case during passive viewing. A control experiment indicated that this effect was not due to predictability or increased attention. Instead, voluntary action altered motion illusions, despite their purported cognitive impenetrability.


Time perception Visual perception Agency Volition Action 


Author note

M.V. and J.M. designed the study. M.V. programmed the experiment, collected and analyzed the data, and drafted the manuscript. M.V. and J.M. wrote and approved the final version of the manuscript for submission. We thank Paul Bloom, Lauren Burns-Coady, Michael Helzer, Kelsey McLeod, Peter Balsam, Cathleen Moore, and the James S. McDonnell Foundation (Grant No. 220020166). This work, in part, contributed to the first author winning the Best Student Poster award (2015 Association for the Scientific Study of Consciousness Annual Meeting) and the Edward E. Smith Memorial Award in Cognitive Neuroscience.


  1. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  2. Behar, I., & Adams, C. K. (1966). Some properties of the reaction-time ready-signal. American Journal of Psychology, 79, 419–426. doi: 10.2307/1420882 CrossRefPubMedGoogle Scholar
  3. Buerkner, P.-C. (2016). brms: Bayesian regression models using Stan. Retrieved from
  4. Dawson, M. R. (1991). The how and why of what went where in apparent motion: Modeling solutions to the motion correspondence problem. Psychological Review, 98, 569–603. doi: 10.1037/0033-295X.98.4.569 CrossRefPubMedGoogle Scholar
  5. Eagleman, D. M. (2008). Human time perception and its illusions. Current Opinion in Neurobiology, 18, 131–136. doi: 10.1016/j.conb.2008.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ekroll, V., Faul, F., & Golz, J. (2008). Classification of apparent motion percepts based on temporal factors. Journal of Vision, 8(4), 31. doi: 10.1167/8.4.31 CrossRefPubMedGoogle Scholar
  7. Engbert, K., Wohlschläger, A., Thomas, R., & Haggard, P. (2007). Agency, subjective time, and other minds. Journal of Experimental Psychology: Human Perception and Performance, 33, 1261–1268. doi: 10.1037/0096-1523.33.6.1261 PubMedGoogle Scholar
  8. Fendrich, R., & Corballis, P. M. (2001). The temporal cross-capture of audition and vision. Perception & Psychophysics, 63, 719–725. doi: 10.3758/BF03194432 CrossRefGoogle Scholar
  9. Firestone, C., & Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for ‘topdown’ effects. Behavioral and Brain Sciences, 39. doi: 10.1017/S0140525X15000965
  10. Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423, 52–77. doi: 10.1111/j.1749-6632.1984.tb23417.x CrossRefPubMedGoogle Scholar
  11. Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5, 382–385. doi: 10.1038/nn827 CrossRefPubMedGoogle Scholar
  12. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. doi: 10.1017/S0140525X01000103 CrossRefPubMedGoogle Scholar
  13. Humphreys, G. R., & Buehner, M. J. (2010). Temporal binding of action and effect in interval reproduction. Experimental Brain Research, 203, 465–470. doi: 10.1007/s00221-010-2199-1 CrossRefPubMedGoogle Scholar
  14. Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12, 273–280. doi: 10.1016/j.tics.2008.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kawabe, T., Roseboom, W., & Nishida, S. (2013). The sense of agency is action–effect causality perception based on cross-modal grouping. Proceedings of the Royal Society B, 280, 20130991. doi: 10.1098/rspb.2013.0991 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kolers, P. A., & Pomerantz, J. R. (1971). Figural change in apparent motion. Journal of Experimental Psychology, 87, 99.CrossRefPubMedGoogle Scholar
  17. Langner, R., Steinborn, M. B., Chatterjee, A., Sturm, W., & Willmes, K. (2010). Mental fatigue and temporal preparation in simple reaction-time performance. Acta Psychologica, 133, 64–72. doi: 10.1016/j.actpsy.2009.10.001 CrossRefPubMedGoogle Scholar
  18. Macar, F., Grondin, S., & Casini, L. (1994). Controlled attention sharing influences time estimation. Memory & Cognition, 22, 673–686. doi: 10.3758/BF03209252 CrossRefGoogle Scholar
  19. Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44, 314–324. doi: 10.3758/s13428-011-0168-7 CrossRefPubMedGoogle Scholar
  20. Moore, J. W., & Obhi, S. S. (2012). Intentional binding and the sense of agency: A review. Consciousness and Cognition, 21, 546–561. doi: 10.1016/j.concog.2011.12.002 CrossRefPubMedGoogle Scholar
  21. R Development Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
  22. Stan Development Team. (2016). Stan: A C++ library for probability and sampling (Version 2.14.1). Retrieved from
  23. Stetson, C., Fiesta, M. P., & Eagleman, D. M. (2007). Does time really slow down during a frightening event? PLoS ONE, 2, e1295. doi: 10.1371/journal.pone.0001295 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ternus, J. (1926). Experimentelle Untersuchungen über phänomenale Identität. Psychologische Forschung, 7, 81–136. doi: 10.1007/BF02424350 CrossRefGoogle Scholar
  25. Waszak, F., Cardoso-Leite, P., & Hughes, G. (2012). Action effect anticipation: Neurophysiological basis and functional consequences. Neuroscience & Biobehavioral Reviews, 36, 943–959. doi: 10.1016/j.neubiorev.2011.11.004 CrossRefGoogle Scholar
  26. Wearden, J. H. (2008). Slowing down an internal clock: Implications for accounts of performance on four timing tasks. Quarterly Journal of Experimental Psychology, 61, 263–274. doi: 10.1080/17470210601154610 CrossRefGoogle Scholar
  27. Wenke, D., & Haggard, P. (2009). How voluntary actions modulate time perception. Experimental Brain Research, 196, 311–318. doi: 10.1007/s00221-009-1848-8 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wertheimer, M. (1912). Experimentelle Studien über das sehen von Bewegung. Zeitschrift für Psychologie, 61, 161–265.Google Scholar
  29. Williams, S. R., & Chapman, C. E. (2002). Time course and magnitude of movement-related gating of tactile detection in humans: III. Effect of motor tasks. Journal of Neurophysiology, 88, 1968–1979.CrossRefPubMedGoogle Scholar
  30. Zakay, D., & Block, R. A. (1996). The role of attention in time estimation processes. Advances in Psychology, 115, 143–164.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Psychology DepartmentColumbia UniversityNew YorkUSA

Personalised recommendations