For our second demonstration of contingent object-based selection, we wanted a paradigm not involving orienting to peripheral cues. These rapid luminance onsets are visually complicated events that automatically recruit multiple processes (Luck & Thomas, 1999). Moreover, the cues in Experiment 1 were possibly differentially salient in the match and mismatch conditions because they abutted onto rectangles of the same or a different color. Although this is unlikely to have driven the ACS effect, it would be advantageous to use a paradigm without cues, avoiding their perceptual baggage altogether (West, Pratt, & Peterson, 2013).
Although not typically cited as an exemplar of object-based attention (Kanwisher & Driver, 1992; Scholl, 2001), Castiello and Umiltà’s (1990) use of different-sized objects to modify the size of the attentional focus is a clear example of objects modulating the distribution of attention. Castiello and Umiltà presented objects of different sizes with a five-element, radial target array (one central element and four eccentric elements); when the objects were small, the center element appeared within the object and the eccentric elements appeared outside; when the objects were large, all elements appeared within. The results showed a processing advantage for the central element only when the objects were small, indicating that the size of the attentional focus adjusted to match the size of the objects; small objects excluded selection of the stimuli outside the box. Although not couched in the parlance of the literature (perhaps because it was contemporary with and not subsequent to its most influential findings), this result is a clear example of object-based attention.
In our second experiment, we adapted this paradigm within our ACS framework so that the objects could match or mismatch the target color. The target array was always presented with a target-color element and a non-target-color element. Consequently, all trials exhibited equal perceptual structures: two objects (both red or green) and a target array with one red, one green, and three gray elements. The question was whether the within-object advantage for small objects would emerge under conditions under which the object color did not match the target color.
Method
Participants
A new sample of 25 students (17 female, eight male) participated in exchange for course credit. All of the students gave informed consent according to the University of Toronto’s IRB. They all had normal or corrected-to-normal vision, and all were naïve to the purpose of the study and its hypotheses.
Apparatus and materials
The setup was the same as in Experiment 1. All stimuli were presented on a dark gray background and consisted of a small, gray fixation point subtending 1° and two peripheral circles, 3.6° or 9.6° in diameter, centered 6.0° to the left and right of fixation. The circles were empty, with a border width of 0.4°, and could be colored red or green. The target array consisted of five letters, which were each randomly designated to be “H” or “E.” The target array would appear on the left or the right side of fixation. The central letter was 6.0° to the left or right of fixation, so that it would appear within the circle on that side. The other letters were displaced 3.0° in either direction along the vertical and horizontal axes, such that the eccentric letters would appear outside the small circle, but that all letters would appear inside the large circle. The letters of the target array were printed in size 40 Arial font. On all trials, one red letter, one green letter, and three gray letters were presented.
Procedure
Trials began with the central fixation dot presented in light gray. After 500 ms, the fixation changed color to red or green for 1,500 ms, indicating the target color at the end of trial and establishing the ACS. The fixation returned to light gray for 500–1,000 ms, whereupon two circles would appear to the left and right of fixation for 500 ms. The target array then appeared until response. Participants were instructed to respond to the identity, “H” or “E,” of the letter in the same color as the fixation at the beginning of the trial. See Fig. 3 for an illustration of the trial sequence.
The experiment had a 2 (Object Size: small or large) × 2 (Target Location: central or eccentric) × 2 (ACS: object–target match or object–target mismatch) repeated measures design. The fixation color always matched the target color, to indicate the appropriate ACS. The target array was presented equally often on the left and right sides of the display. The target was presented equally often at all five possible locations of the array. Participants completed 12 practice trials and 320 experimental trials.
Results
Trials faster than 150 ms were discarded as anticipations, and trials slower than three SDs from the participant’s mean for every condition were discarded as outliers (2.9 %). Incorrect responses were also discarded (9.7 %) from the RT analyses. The mean RTs were submitted to a 2 (Object Size: small or large) × 2 (Target Position: central or eccentric) × 2 (ACS: object–target match or object–target mismatch) repeated measures ANOVA. We observed a significant main effect of ACS, as participants were slower to respond when the object color matched the target ACS: F(1, 24) = 39.82, p < .001, η
p
2 = .62. Critically, there was a three-way interaction between all of the factors, as predicted: F(1, 24) = 9.55, p = .005, η
p
2 = .28. No other sources of variance were reliable: all Fs < 3.05, all ps > .093.
Castiello and Umiltà’s (1990) original effect was observed in a two-way interaction between object size and target position. We predicted that we would observe the same effect when the object matched the target ACS, and would observe no two-way interaction when the object was presented in the nonmatching color. So, to probe the observed three-way interaction further, we conducted separate 2 (Object Size: small or large) × 2 (Target Position: central or eccentric) repeated measures ANOVAs on the mean RTs in the ACS match and mismatch conditions. When the object color did not match the target ACS, we found no significant sources of variance: all Fs < 1.33, all ps > .260.
When the object color matched the target ACS, we observed a significant interaction between object size and target position, replicating Castiello and Umiltà’s (1990) original effect: F(1, 24) = 7.42, p = .012, η
p
2 = .24 (see Fig. 4). Further support for the replication comes from a planned comparison of the mean RTs for central versus eccentric targets presented with small objects, t(24) = 2.04, p = .026 one-tailed, d = 0.59, confirming that identification of the target letters was slower outside than inside the small objects. In addition to the significant interaction, a marginal effect of object size emerged, F(1, 24) = 3.57, p = .071, η
p
2 = .13, and no effect of target position, F(1, 24) = 0.54, p = .468.
A further test of the idea that OBEs should emerge only when the object color matches the ACS would be to compare the RTs to eccentric targets presented with small objects in the match and mismatch conditions; the objects should restrict the spread of attention within in the match condition, and they should not affect the allocation of attention when they mismatch. Confirming this prediction, RTs were significantly slower to eccentric targets presented with small objects in the match versus the mismatch condition: t(24) = 7.99, p < .001, d = 2.26.
Discussion
OBEs emerged only when participants’ ACSs compelled them to attend to the objects, confirming the conclusion that object-based selection is contingent on top-down control. In Experiment 1, the cues abutted onto the rectangles, such that the mismatch condition presented a two-color contrast, whereas the match condition did not. Although it is unlikely that the contrast caused the effect—because the cue was effective in both ACS conditions, as evidenced by the large location-based cueing effect—in Experiment 2 we did away with this contrast. Consequently, the match and mismatch trials presented equal perceptual stimulation.