Advertisement

Attention, Perception, & Psychophysics

, Volume 77, Issue 1, pp 50–66 | Cite as

Task specificity of attention training: the case of probability cuing

  • Yuhong V. JiangEmail author
  • Khena M. Swallow
  • Bo-Yeong Won
  • Julia D. Cistera
  • Gail M. Rosenbaum
Article

Abstract

Statistical regularities in our environment enhance perception and modulate the allocation of spatial attention. Surprisingly little is known about how learning-induced changes in spatial attention transfer across tasks. In this study, we investigated whether a spatial attentional bias learned in one task transfers to another. Most of the experiments began with a training phase in which a search target was more likely to be located in one quadrant of the screen than in the other quadrants. An attentional bias toward the high-probability quadrant developed during training (probability cuing). In a subsequent, testing phase, the target’s location distribution became random. In addition, the training and testing phases were based on different tasks. Probability cuing did not transfer between visual search and a foraging-like task. However, it did transfer between various types of visual search tasks that differed in stimuli and difficulty. These data suggest that different visual search tasks share a common and transferrable learned attentional bias. However, this bias is not shared by high-level, decision-making tasks such as foraging.

Keywords

Spatial attention Incidental learning Probability cuing Visual search 

Notes

Author note

This study was supported in part by NIH Grant No. MH102586. We thank Jeremy Wolfe and Roger Remington for discussions, and Anthony Asaad, Lily Berrin, Christian Capistrano, Youngki Hong, Hyejin Lee, Jie Hua Ong, and Heather Sigstad for help with data collection.

References

  1. Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., . . . Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501, 97–101. doi: 10.1038/nature12486
  2. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443. doi: 10.1016/j.tics.2012.06.010 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baum, W. M. (1974). On two types of deviation from the matching law: Bias and undermatching. Journal of the Experimental Analysis of Behavior, 22, 231–242.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Berry, D. C., Banbury, S., & Henry, L. (1997). Transfer across form and modality in implicit and explicit memory. Quarterly Journal of Experimental Psychology, 50A, 1–24. doi: 10.1080/713755685 CrossRefGoogle Scholar
  5. Bisley, J. W., & Goldberg, M. E. (2010). Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience, 33, 1–21. doi: 10.1146/annurev-neuro-060909-152823 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brady, T. F., & Chun, M. M. (2007). Spatial constraints on learning in visual search: Modeling contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 33, 798–815. doi: 10.1037/0096-1523.33.4.798 PubMedGoogle Scholar
  7. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357 PubMedCrossRefGoogle Scholar
  8. Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4, 170–178. doi: 10.1016/S1364-6613(00)01476-5 PubMedCrossRefGoogle Scholar
  9. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101. doi: 10.1146/annurev.psych.093008.100427 PubMedCrossRefGoogle Scholar
  10. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. doi: 10.1006/cogp.1998.0681 PubMedCrossRefGoogle Scholar
  11. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/annurev.ne.18.030195.001205 PubMedCrossRefGoogle Scholar
  12. Dienes, Z., & Berry, D. (1997). Implicit learning: Below the subjective threshold. Psychonomic Bulletin & Review, 4, 3–23. doi: 10.3758/BF03210769 CrossRefGoogle Scholar
  13. Druker, M., & Anderson, B. (2010). Spatial probability aids visual stimulus discrimination. Frontiers in Human Neuroscience, 4, 63. doi: 10.3389/fnhum.2010.00063 PubMedCentralPubMedGoogle Scholar
  14. Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172–179. doi: 10.1016/j.tics.2010.01.004 PubMedCrossRefGoogle Scholar
  15. Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269–297. doi: 10.1146/annurev.psych.48.1.269 PubMedCrossRefGoogle Scholar
  16. Faubert, J. (2013). Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Scientific Reports, 3, 1154. doi: 10.1038/srep01154 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fecteau, J. H., & Munoz, D. P. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10, 382–390. doi: 10.1016/j.tics.2006.06.011 PubMedCrossRefGoogle Scholar
  18. Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12, 499–504.PubMedCrossRefGoogle Scholar
  19. Fiser, J., & Aslin, R. N. (2005). Encoding multielement scenes: Statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 134, 521–537. doi: 10.1037/0096-3445.134.4.521 CrossRefGoogle Scholar
  20. Folstein, J. R., Gauthier, I., & Palmeri, T. J. (2010). Mere exposure alters category learning of novel objects. Frontiers in Psychology, 1, 40. doi: 10.3389/fpsyg.2010.00040 PubMedCentralPubMedGoogle Scholar
  21. Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13, 520–525. doi: 10.1111/1467-9280.00491 PubMedCrossRefGoogle Scholar
  22. Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67, 1252–1268.CrossRefGoogle Scholar
  23. Geyer, T., Zehetleitner, M., & Müller, H. J. (2010). Contextual cueing of pop-out visual search: When context guides the deployment of attention. Journal of Vision, 10(5), 20. doi: 10.1167/10.5.20 PubMedCrossRefGoogle Scholar
  24. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–537. doi: 10.1038/nature01647 PubMedCrossRefGoogle Scholar
  25. Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current Biology, 20, 1573–1579. doi: 10.1016/j.cub.2010.07.040 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hay, J. F., Pelucchi, B., Graf Estes, K., & Saffran, J. R. (2011). Linking sounds to meanings: Infant statistical learning in a natural language. Cognitive Psychology, 63, 93–106. doi: 10.1016/j.cogpsych.2011.06.002 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Herrnstein, R. J. (1974). Formal properties of the matching law. Journal of the Experimental Analysis of Behavior, 21, 159–164. doi: 10.1901/jeab.1974.21-159 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: Control from multiple memory systems. Trends in Cognitive Sciences, 16, 576–579. doi: 10.1016/j.tics.2012.10.003 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2, 194–203. doi: 10.1038/35058500 PubMedCrossRefGoogle Scholar
  30. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105, 6829–6833. doi: 10.1073/pnas.0801268105 CrossRefGoogle Scholar
  31. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108, 10081–10086. doi: 10.1073/pnas.1103228108 CrossRefGoogle Scholar
  32. Jiang, Y., & Kanwisher, N. (2003). Common neural mechanisms for response selection and perceptual processing. Journal of Cognitive Neuroscience, 15, 1095–1110. doi: 10.1162/089892903322598076 PubMedCrossRefGoogle Scholar
  33. Jiang, Y., & Song, J.-H. (2005). Spatial context learning in visual search and change detection. Perception & Psychophysics, 67, 1128–1139.CrossRefGoogle Scholar
  34. Jiang, Y. V., & Swallow, K. M. (2013a). Body and head tilt reveals multiple frames of reference for spatial attention. Journal of Vision, 13(13), 9. doi: 10.1167/13.13.9 PubMedCrossRefGoogle Scholar
  35. Jiang, Y. V., & Swallow, K. M. (2013b). Spatial reference frame of incidentally learned attention. Cognition, 126, 378–390. doi: 10.1016/j.cognition.2012.10.011 PubMedCrossRefGoogle Scholar
  36. Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception and Performance, 39, 87–99. doi: 10.1037/a0027611 PubMedCentralPubMedGoogle Scholar
  37. Jiang, Y. V., Swallow, K. M., & Capistrano, C. G. (2013). Visual search and location probability learning from variable perspectives. Journal of Vision, 13(6), 13. doi: 10.1167/13.6.13 PubMedCrossRefGoogle Scholar
  38. Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology: Human Perception and Performance, 39, 285–297. doi: 10.1037/a0028022 PubMedCentralPubMedGoogle Scholar
  39. Jiang, Y. V., Swallow, K. M., & Sun, L. (2014). Egocentric coding of space for incidentally learned attention: Effects of scene context and task instructions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 233–250. doi: 10.1037/a0033870 PubMedGoogle Scholar
  40. Jiang, Y. V., Won, B.-Y., & Swallow, K. M. (2014). First saccadic eye movement reveals persistent attentional guidance by implicit learning. Journal of Experimental Psychology: Human Perception and Performance, 40, 1161–1173. doi: 10.1037/a0035961 PubMedGoogle Scholar
  41. Kunar, M., Flusberg, S., Horowitz, T., & Wolfe, J. (2007). Does contextual cuing guide the deployment of attention? Journal of Experimental Psychology, 33, 816–828. doi: 10.1037/0096-1523.33.4.816 PubMedCentralPubMedGoogle Scholar
  42. Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109, 376–400. doi: 10.1037/0033-295X.109.2.376 PubMedCrossRefGoogle Scholar
  43. Makovski, T., Vázquez, G. A., & Jiang, Y. V. (2008). Visual learning in multiple-object tracking. PLoS ONE, 3, e2228. doi: 10.1371/journal.pone.0002228 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of Experimental Psychology: Human Perception and Performance, 14, 453–471. doi: 10.1037/0096-1523.14.3.453 PubMedGoogle Scholar
  45. Namikas, G., & Archer, E. J. (1960). Motor skill transfer as a function of intertask interval and pretransfer task difficulty. Journal of Experimental Psychology, 59, 109–112.PubMedCrossRefGoogle Scholar
  46. Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44–64. doi: 10.1016/0010-0285(75)90004-3 CrossRefGoogle Scholar
  47. Olson, I. R., & Chun, M. M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1299–1313. doi: 10.1037/0278-7393.27.5.1299 PubMedGoogle Scholar
  48. Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences, 105, 2745–2750. doi: 10.1073/pnas.0708424105 CrossRefGoogle Scholar
  49. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., . . . Ballard, C. G. (2010). Putting brain training to the test. Nature, 465, 775–778. doi: 10.1038/nature09042
  50. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: 10.1163/156856897X00366 PubMedCrossRefGoogle Scholar
  51. Pierce, W. D., & Epling, W. F. (1983). Choice, matching, and human behavior: A review of the literature. Behavior Analyst/MABA, 6, 57–76.Google Scholar
  52. Reber, A. S. (1993). Implicit learning and tacit knowledge an essay on the cognitive unconscious. New York, NY: Oxford University Press.Google Scholar
  53. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., . . . Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142, 359–379. doi: 10.1037/a0029082
  54. Rosenbaum, G. M., & Jiang, Y. V. (2013). Interaction between scene-based and array-based contextual cueing. Attention, Perception, & Psychophysics, 75, 888–899. doi: 10.3758/s13414-013-0446-9 CrossRefGoogle Scholar
  55. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1928. doi: 10.1126/science.274.5294.1926 PubMedCrossRefGoogle Scholar
  56. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  57. Swallow, K. M., & Zacks, J. M. (2008). Sequences learned without awareness can orient attention during the perception of human activity. Psychonomic Bulletin & Review, 15, 116–122. doi: 10.3758/PBR.15.1.116 CrossRefGoogle Scholar
  58. Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., . . . Gabrieli, J. D. E. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE, 8, e63614. doi: 10.1371/journal.pone.0063614
  59. Treisman, A. (1988). Features and objects: The Fourteenth Bartlett Memorial Lecture. Quarterly Journal of Experimental Psychology, 40A, 201–237. doi: 10.1080/02724988843000104 CrossRefGoogle Scholar
  60. Turk-Browne, N. B. (2012). Statistical learning and its consequences. Nebraska Symposium on Motivation, 59, 117–146.PubMedCrossRefGoogle Scholar
  61. Turk-Browne, N. B., Jungé, J., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134, 552–564. doi: 10.1037/0096-3445.134.4.552 CrossRefGoogle Scholar
  62. Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects in visual search: An effect of sequential dependencies. Journal of Experimental Psychology: Human Perception and Performance, 32, 1294–1301. doi: 10.1037/0096-1523.32.5.1294 PubMedGoogle Scholar
  63. Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23, 747–764.PubMedCrossRefGoogle Scholar
  64. Wolfe, J. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9, 33–39. doi: 10.1111/1467-9280.00006 CrossRefGoogle Scholar
  65. Wolfe, J. (2007). Guided Search 4.0: Current progress with a model of visual search. In W. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York, NY: Oxford University.CrossRefGoogle Scholar
  66. Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., & O’Connell, K. M. (1992). The role of categorization in visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance, 18, 34–49. doi: 10.1037/0096-1523.18.1.34 PubMedGoogle Scholar
  67. Zhao, J., Al-Aidroos, N., & Turk-Browne, N. B. (2013). Attention is spontaneously biased toward regularities. Psychological Science, 24, 667–677. doi: 10.1177/0956797612460407 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Zhao, J., Ngo, N., McKendrick, R., & Turk-Browne, N. B. (2011). Mutual interference between statistical summary perception and statistical learning. Psychological Science, 22, 1212–1219. doi: 10.1177/0956797611419304 PubMedCrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Yuhong V. Jiang
    • 1
    Email author
  • Khena M. Swallow
    • 2
  • Bo-Yeong Won
    • 1
  • Julia D. Cistera
    • 3
  • Gail M. Rosenbaum
    • 4
  1. 1.Department of PsychologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of PsychologyCornell UniversityIthacaUSA
  3. 3.Department of PsychologyUniversity of TorontoTorontoCanada
  4. 4.Department of PsychologyTemple UniversityPhiladelphiaUSA

Personalised recommendations