Semantic access occurs outside of awareness for the ground side of a figure

Abstract

Traditional theories of vision assume that figures and grounds are assigned early in processing, with semantics being accessed later and only by figures, not by grounds. We tested this assumption by showing observers novel silhouettes with borders that suggested familiar objects on their ground side. The ground appeared shapeless near the figure’s borders; the familiar objects suggested there were not consciously perceived. Participants’ task was to categorize words shown immediately after the silhouettes as naming natural versus artificial objects. The words named objects from the same or from a different superordinate category as the familiar objects suggested in the silhouette ground. In Experiment 1, participants categorized words faster when they followed silhouettes suggesting upright familiar objects from the same rather than a different category on their ground sides, whereas no category differences were observed for inverted silhouettes. This is the first study to show unequivocally that, contrary to traditional assumptions, semantics are accessed for objects that might be perceived on the side of a border that will ultimately be perceived as a shapeless ground. Moreover, although the competition for figural status results in suppression of the shape of the losing contender, its semantics are not suppressed. In Experiment 2, we used longer silhouette-to-word stimulus onset asynchronies to test whether semantics would be suppressed later in time, as might occur if semantics were accessed later than shape memories. No evidence of semantic suppression was observed; indeed, semantic activation of the objects suggested on the ground side of a border appeared to be short-lived. Implications for feedforward versus dynamical interactive theories of object perception are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Although readers of this article might easily be able to perceive these real-world objects, the participants in this study were naïve: They were not informed about figure–ground segregation prior to the experiment. For more information, see the Method section.

  2. 2.

    Peterson and Skow (2008) found evidence of inhibition only when the well-known objects were suggested on the ground side of the silhouette’s borders; evidence of facilitation was obtained when they were sketched on the figure side, ruling out alternative explanations of their results.

  3. 3.

    Similar patterns were evident in the RTs and errors. RTs were significantly faster for same- versus different-category words when the silhouettes were upright, t(33) = 3.64, p < .01, but not when they were inverted, p > .11. The interaction between condition and orientation was not significant in an ANOVA performed on RTs alone, however, F(1, 33) = 2.51, p > .12. Errors rates were significantly lower for same- than for different-category trials when the silhouettes were upright, t(33) = 2.23, p < .05, but not when they were inverted, p > .10. In addition, error rates were significantly lower for same-category trials when the silhouettes were upright than when they were inverted, t(33) = 2.42, p < .05. The interaction between condition and orientation was not significant in an ANOVA performed on errors alone, however, F(1, 33) = 2.73, p > .11.

  4. 4.

    A 2 × 2 within-subjects ANOVA on mean RTs with the factors Category Condition (same/different) and Orientation (upright/inverted) revealed no significant main effects or interactions, ps > .18. Moreover, t tests reveal no significant differences between any two conditions, ps > .10. The same analysis conducted on participants’ error rates also showed no significant main effects or interactions, ps > .73. Additionally, t tests revealed no significant differences between any of the conditions, ps > .80. See Table 1 for the mean RTs and error rates.

  5. 5.

    A 2 × 2 within-subjects ANOVA on mean RTs with the factors Category Condition (same/different) and Orientation (upright/inverted) revealed no significant differences, ps > .14. The same analysis conducted on participants’ error rates also showed no significant main effects or interactions, ps > .65. See Table 1 for the mean RTs and error rates.

  6. 6.

    Even if competition does extend to semantics, there would be little competition in our stimuli, because the insides of the silhouettes portrayed novel shapes that lacked meaning, and thus, their engagement in competition with the meaningful grounds at the level of semantics would be negligible.

References

  1. Bueno, S., & Frenck-Mestre, C. (2008). The activation of semantic memory: Effects of prime exposure, prime–target relationship, and task demands. Memory & Cognition, 36, 882–898. doi:10.3758/MC.36.4.882

    Article  Google Scholar 

  2. Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36, 96–107.

    PubMed  Article  Google Scholar 

  3. Clarke, A., Taylor, K. I., Devereux, B., Randall, B., & Tyler, L. K. (2013). From perception to conception: How meaningful objects are processed over time. Cerebral Cortex, 23, 187–197.

    PubMed Central  PubMed  Article  Google Scholar 

  4. Costello, P., Jiang, Y., Baartman, B., McGlennen, K., & He, S. (2009). Semantic and subword priming during binocular suppression. Consciousness and Cognition, 18, 375–382. doi:10.1016/j.concog.2009.02.003

    PubMed  Article  Google Scholar 

  5. Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., & Le Bihan, D. (1998). Imaging unconscious semantic priming. Nature, 395, 597–600. doi:10.1038/26967

    PubMed  Article  Google Scholar 

  6. Dell’Acqua, R., & Grainger, J. (1999). Unconscious semantic priming from pictures. Cognition, 73, B1–B15. doi:10.1016/S0010-0277(99)00049-9

    PubMed  Article  Google Scholar 

  7. Dell’Acqua, R., Sessa, P., Peressotti, F., Mulatti, C., Navarrete, E., & Grainger, J. (2010). ERP evidence for ultra-fast semantic processing in the picture–word interference paradigm. Frontiers in Psychology, 1, 177. doi:10.3389/fpsyg.2010.00177

    PubMed Central  PubMed  Google Scholar 

  8. Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual categorization. Frontiers in Psychology, 2, 243. doi:10.3389/fpsyg.2011.00243

    PubMed Central  PubMed  Article  Google Scholar 

  9. Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698. doi:10.1037/0278-7393.10.4.680

    Google Scholar 

  10. Forster, K. I., & Forster, J. C. (2003). DMDX: A windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116–124. doi:10.3758/BF03195503

    Article  Google Scholar 

  11. Forster, K. I., Mohan, K., & Hector, J. (2003). The mechanics of masked priming. In S. Kinoshita & S. J. Lupker (Eds.), Masked priming: The state of the art (pp. 2–21). New York, NY: Psychology Press.

    Google Scholar 

  12. Gibson, B. S., & Peterson, M. A. (1994). Does orientation-independent object recognition precede orientation-dependent recognition? Evidence from a cueing paradigm. Journal of Experimental Psychology: Human Perception and Performance, 20, 299–316.

    PubMed  Google Scholar 

  13. Goodhew, S. C., Visser, T. A., Lipp, O. V., & Dux, P. E. (2011). Competing for consciousness: Prolonged mask exposure reduces object substitution masking. Journal of Experimental Psychology: Human Perception and Performance, 37, 588–596. doi:10.1037/a0018740

    PubMed  Google Scholar 

  14. Gould, I. C., Rushworth, M. F., & Nobre, A. C. (2011). Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. Journal of Neurophysiology, 105, 1318–1326. doi:10.1152/jn.00653.2010

    PubMed Central  PubMed  Article  Google Scholar 

  15. Greenwald, A. G., Draine, S. C., & Abrams, R. L. (1996). Three cognitive markers of unconscious semantic activation. Science, 273, 1699–1702. doi:10.1126/science.273.5282.1699

    PubMed  Article  Google Scholar 

  16. Grill-Spector, K., & Kanwisher, N. (2001). Common cortical mechanisms for different components of visual object recognition: A combined behavioral and fMRI study. Journal of Vision, 1(3), 474. doi:10.1167/1.3.474

    Article  Google Scholar 

  17. Grossberg, S. (1994). 3-D vision and figure–ground separation by visual cortex. Perception & Psychophysics, 55, 48–120. doi:10.3758/BF03206880

    Article  Google Scholar 

  18. Hebb, D. O. (1949). The organization of behavior: A neuropsychological approach. New York, NY: Wiley.

    Google Scholar 

  19. Huckauf, A., Knops, A., Nuerk, H. C., & Willmes, K. (2008). Semantic processing of crowded stimuli? Psychological Research, 72, 648–656.

    PubMed  Article  Google Scholar 

  20. Hutchinson, K. A. (2003). Is semantic priming due to association strength or feature overlap? A microanalytic review. Psychonomic Bulletin & Review, 10, 785–813. doi:10.3758/BF03196544

    Article  Google Scholar 

  21. Jolicœur, P. (1985). The time to name disoriented natural objects. Memory & Cognition, 13, 289–303.

    Article  Google Scholar 

  22. Kennett, S., & Driver, J. (2014). Within-hemifield posture changes affect tactile–visual exogenous spatial cueing without spatial precision, especially in the dark. Attention, Perception, & Psychophysics, 76, 1121–1135. doi:10.3758/s13414-013-0484-3

    Article  Google Scholar 

  23. Kiefer, M., & Spitzer, M. (2000). Time course of conscious and unconscious semantic brain activation. Cognitive Neuroscience, 11, 2401–2407.

    Google Scholar 

  24. Kienker, P. K., Sejnowski, T. J., Hinton, G. E., & Schumacher, L. E. (1986). Separating figure from ground with a parallel network. Perception, 15, 197–216. doi:10.1068/p150197

    PubMed  Article  Google Scholar 

  25. Kimchi, R., & Peterson, M. A. (2008). Figure–ground segmentation can occur without attention. Psychological Science, 19, 660–668. doi:10.1111/j.1467-9280.2008.02140.x

    PubMed  Article  Google Scholar 

  26. Koffka, K. (1935). Principles of Gestalt psychology. New York, NY: Harcourt.

    Google Scholar 

  27. Köhler, W. (1947). Gestalt psychology: An introduction to new concepts in modern psychology. New York, NY: Liveright. Original work published 1929.

    Google Scholar 

  28. Koivisto, M., & Revonsuo, A. (2007). How meaning shapes seeing. Psychological Science, 18, 845–849. doi:10.1111/j.1467-9280.2007.01989.x

    PubMed  Article  Google Scholar 

  29. Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., & Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60, 1126–1141. doi:10.1016/j.neuron.2008.10.043

    PubMed Central  PubMed  Article  Google Scholar 

  30. Kurbat, M. A. (1997). Can the recognition of living things really be selectively impaired? Neuropsychologia, 35, 813–827.

    PubMed  Article  Google Scholar 

  31. Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neuroscience, 23, 571–579. doi:10.1016/S0166-2236(00)01657-X

    Article  Google Scholar 

  32. Likova, L. T., & Tyler, C. W. (2008). Occipital network for figure/ground organization. Experimental Brain Research, 189, 257–267. doi:10.1007/s00221-008-1417-6

    PubMed  Article  Google Scholar 

  33. Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron, 62, 281–290.

    PubMed Central  PubMed  Article  Google Scholar 

  34. Lucas, M. (2000). Semantic priming without association: A meta-analytic review. Psychonomic Bulletin & Review, 7, 618–630. doi:10.3758/BF03212999

    Article  Google Scholar 

  35. Luck, S. J., Vogel, E. K., & Shapiro, K. L. (1996). Word meanings can be accessed but not reported during the attentional blink. Nature, 383, 616–618. doi:10.1038/383616a0

    PubMed  Article  Google Scholar 

  36. Macé, M. J.-M., Joubert, O. R., Nespoulous, J.-L., & Fabre-Thorpe, M. (2009). The time-course of visual categorizations: You spot the animal faster than the bird. PLoS ONE, 4(e5927), 1–12. doi:10.1371/journal.pone.0005927

    Google Scholar 

  37. McRae, K., & Boisvert, S. (1998). Automatic semantic similarity priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 558–572. doi:10.1037/0278-7393.24.3.558

    Google Scholar 

  38. Mohan, K., & Arun, S. P. (2012). Similarity relations in visual search predict rapid visual categorization. Journal of Vision, 12(11), 19. doi:10.1167/12.11.19. 1–24.

    PubMed Central  PubMed  Article  Google Scholar 

  39. Naccache, L., Blandin, E., & Dehaene, S. (2002). Unconscious masked priming depends on temporal attention. Psychological Science, 13, 416–424. doi:10.1111/1467-9280.00474

    PubMed  Article  Google Scholar 

  40. Navon, D. (2011). The effect of recognizability on figure–ground processing: Does it affect parsing or only figure selection? Quarterly Journal of Experimental Psychology, 64, 608–624. doi:10.1080/17470218.2010.516834

    Article  Google Scholar 

  41. Oram, M. W., & Perrett, D. I. (1992). Time course of neural responses discriminating different views of the face and head. Journal of Neurophysiology, 68, 70–84.

    PubMed  Google Scholar 

  42. Peterson, M. A., & Cacciamani, L. (2013). Toward a dynamical view of object perception. In S. J. Dickinson & Z. Pizlo (Eds.), Shape perception in human and computer vision: An interdisciplinary perspective (pp. 443–457). London, UK: Springer.

    Chapter  Google Scholar 

  43. Peterson, M. A., Cacciamani, L., Mojica, A. J., & Sanguinetti, J. S. (2012). Meaning can be accessed for the ground side of a figure. Journal of Gestalt Theory, 34, 297–314.

    Google Scholar 

  44. Peterson, M. A., & Gibson, B. S. (1994a). Must figure–ground organization precede object recognition? An assumption in peril. Psychological Science, 5, 253–259.

    Article  Google Scholar 

  45. Peterson, M. A., & Gibson, B. S. (1994b). Object recognition contributions to figure–ground organization: Operations on outlines and subjective contours. Perception & Psychophysics, 56, 551–564.

    Article  Google Scholar 

  46. Peterson, M. A., Harvey, E. M., & Weidenbacher, H. J. (1991). Shape recognition contributions to figure–ground reversal: Which route counts? Journal of Experimental Psychology: Human Perception and Performance, 17, 1075–1089. doi:10.1037/0096-1523.17.4.1075

    PubMed  Google Scholar 

  47. Peterson, M. A., & Kim, J. H. (2001). On what is bound in figures and grounds. Visual Cognition, 8, 329–348. doi:10.1080/13506280143000034

    Article  Google Scholar 

  48. Peterson, M. A., & Kimchi, R. (2013). Perceptual organization. In D. Reisberg (Ed.), The Oxford handbook of cognitive psychology (pp. 9–31). Oxford, UK: Oxford University Press.

    Google Scholar 

  49. Peterson, M. A., & Skow, E. (2008). Inhibition competition between shape properties in figure–ground perception. Journal of Experimental Psychology: Human Perception and Performance, 34, 251–267. doi:10.1037/0096-1523.34.2.251

    PubMed  Google Scholar 

  50. Plaut, D. C. (1995). Semantic and associative priming in a distributed attractor network. In J. D. Moore, J. F. Lehman, & A. Lesgold (Eds.), Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society (Vol. 17, pp. 37–42). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  51. Raposo, A., Mendes, M., & Marques, J. F. (2012). The hierarchical organization of semantic memory: Executive function in the processing of superordinate concepts. NeuroImage, 59, 1870–1878.

    PubMed  Article  Google Scholar 

  52. Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019–1025. doi:10.1038/14819

    PubMed  Article  Google Scholar 

  53. Romei, V., Driver, J., Schyns, P. G., & Thut, G. (2011). Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Current Biology, 21, 334–337.

    PubMed Central  PubMed  Article  Google Scholar 

  54. Salvagio, E., Cacciamani, L., & Peterson, M. A. (2012). Competition-strength-dependent ground suppression in figure–ground perception. Attention, Perception, & Psychophysics, 74, 964–978. doi:10.3758/s13414-012-0280-5

    Article  Google Scholar 

  55. Sanguinetti, J. L., Allen, J. J., & Peterson, M. A. (2014). The ground side of an object: Perceived as shapeless yet processed for semantics. Psychological science, 25, 256–264.

    PubMed  Article  Google Scholar 

  56. Sejnowski, T. J., & Hinton, G. E. (1987). Separating figure from ground with a Boltzmann machine. In M. A. Arbib, A. R. Hanson, P. Alfred, & Sloan Foundation, & National Institutes of Health (Eds.), Vision, brain, and cooperative computation (pp. 703–724). Cambridge, MA: MIT Press.

    Google Scholar 

  57. Serre, T., Oliva, A., & Poggio, T. A. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104, 6424–6429.

    Article  Google Scholar 

  58. Strother, L., Lavell, C., & Vilis, T. (2012). Figure–ground representation and its decay in primary visual cortex. Journal of Cognitive Neuroscience, 24, 905–914. doi:10.1162/jocn_a_00190

    PubMed  Article  Google Scholar 

  59. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522. doi:10.1038/381520a0

    PubMed  Article  Google Scholar 

  60. Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. New York, NY: Cambridge University Press.

    Google Scholar 

  61. Trujillo, L. T., Allen, J. J., Schnyer, D. M., & Peterson, M. A. (2010). Neurophysiological evidence for the influence of past experience on figure–ground perception. Journal of Vision, 10(2), 5:1–21. doi:10.1167/10.2.5

  62. Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 5, 244–252. doi:10.1016/S1364-6613(00)01651-X

    PubMed  Article  Google Scholar 

  63. Tyler, L. K., Stamatakis, E. A., Bright, P., Acres, K., Abdallah, S., Rodd, J. M., & Moss, H. E. (2004). Processing objects at different levels of specificity. Journal of Cognitive Neuroscience, 16, 351–362.

    PubMed  Article  Google Scholar 

  64. Urner, M., Schwarzkopf, D. S., Friston, K., & Rees, G. (2013). Early visual learning induces long-lasting connectivity changes during rest in the human brain. NeuroImage, 77, 148–156.

    PubMed Central  PubMed  Article  Google Scholar 

  65. Van den Bussche, E., Van den Noortgate, W., & Reynvoet, B. (2009). Mechanism of masked priming: A meta analysis. Psychological Bulletin, 135, 452–477. doi:10.1037/a0015329

    PubMed  Article  Google Scholar 

  66. Vecera, S. P., & Farah, M. J. (1997). Is visual image segmentation a bottom-up or interactive process? Perception & Psychophysics, 59, 1280–1296. doi:10.3758/BF03214214

    Article  Google Scholar 

  67. Vecera, S. P., Flevaris, A. V., & Filapek, J. C. (2004). Exogenous spatial attention influences figure–ground assignment. Psychological Science, 15, 20–26. doi:10.1111/j.0963-7214.2004.01501004.x

    PubMed  Article  Google Scholar 

  68. Zhou, H., Friedman, H. S., & von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 20, 6594–6611.

    PubMed  Google Scholar 

  69. Zusne, L. (1975). Curved contours and the associative response. Perceptual and Motor Skills, 40, 203–208.

    PubMed  Article  Google Scholar 

Download references

Author note

M.A.P. acknowledges the National Science Foundation (Grant No. BCS 0960529) for support of this research. We thank Steve Palmer for suggesting the orientation manipulation used in these experiments. We also thank the reviewers for their helpful comments on previous versions of the manuscript. Portions of these results were presented at the Vision Science Society Meetings in 2012 and 2013, with abstracts published in Journal of Vision.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Cacciamani.

Appendix

Appendix

Condition Category Object Suggested in Silhouette Ground Word
Same-Category Artificial bell rope
coffeepot ferryboat
jet hat
lamp flag
umbrella scissors
watering can measuring tape
wrench napkin
train radio
Natural bunny whale
butterfly blueberry
duck wolf
leaf deer
pig egg
pineapple cranberry
bear rose
eagle puppy
Different-Category Artificial elephant suitcase
flower wallet
grapes diaper
hand book
owl jar
seahorse saucepan
woman watch
dog car
Natural anchor celery
axe ant
boot crow
faucet gopher
guitar peanut
house heart
hydrant mangoes
trumpet rooster

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cacciamani, L., Mojica, A.J., Sanguinetti, J.L. et al. Semantic access occurs outside of awareness for the ground side of a figure. Atten Percept Psychophys 76, 2531–2547 (2014). https://doi.org/10.3758/s13414-014-0743-y

Download citation

Keywords

  • Figure-ground segregation
  • Object perception
  • Perceptual organization
  • Semantic priming
  • Visual awareness