Advertisement

Attention, Perception, & Psychophysics

, Volume 76, Issue 7, pp 1902–1913 | Cite as

Asymmetrical access to color and location in visual working memory

  • Jason Rajsic
  • Daryl E. Wilson
Article

Abstract

Models of visual working memory (VWM) have benefitted greatly from the use of the delayed-matching paradigm. However, in this task, the ability to recall a probed feature is confounded with the ability to maintain the proper binding between the feature that is to be reported and the feature (typically location) that is used to cue a particular item for report. Given that location is typically used as a cue-feature, we used the delayed-estimation paradigm to compare memory for location to memory for color, rotating which feature was used as a cue and which was reported. Our results revealed several novel findings: 1) the likelihood of reporting a probed object’s feature was superior when reporting location with a color cue than when reporting color with a location cue; 2) location report errors were composed entirely of swap errors, with little to no random location reports; and 3) both colour and location reports greatly benefitted from the presence of nonprobed items at test. This last finding suggests that it is uncertainty over the bindings between locations and colors at memory retrieval that drive swap errors, not at encoding. We interpret our findings as consistent with a representational architecture that nests remembered object features within remembered locations.

Keywords

Visual working memory Precision Spatial working memory 

Notes

Acknowledgment

Funding for this research was provided by a Discovery grant to Daryl Wilson from the Natural Sciences and Engineering Research Council of Canada.

References

  1. Baddeley, A. (1992). Working Memory. Science, 255(5044), 556–559.PubMedCrossRefGoogle Scholar
  2. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7, 1–11.CrossRefGoogle Scholar
  3. Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., & Husain, M. (2011). Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, 11(10), 6, 1–15.CrossRefGoogle Scholar
  4. Bays, P. M., Wu, E. Y., & Husain, M. (2011). Storage and binding of object features in visual working memory. Neuropsychologia, 49, 6, 1622–1631.CrossRefGoogle Scholar
  5. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.PubMedCrossRefGoogle Scholar
  6. Emrich, S. M., Riggall, A. C., LaRocque, J. J., & Postle, B. R. (2013). Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. The Journal of Neuroscience, 33(15), 6516–6523.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25(5), 754–761.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Fougnie, D., & Alvarez, G. A. (2011). Object features fail independently in visual working memory: Evidence for a probabilistic feature-store model. Journal of Vision, 11(12), 3, 1–12.CrossRefGoogle Scholar
  9. Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Science, 17(3), 134–141.CrossRefGoogle Scholar
  10. Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capacity limits in visual working memory. Cognitive Neuroscience, 20(2), 177–182.Google Scholar
  11. Fuster, J. M. (1997). Network memory. Trends in Neurosciences, 20(10), 451–459.PubMedCrossRefGoogle Scholar
  12. Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. The Journal of Neuroscience, 31(23), 8502–8511.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632–635.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Hyun, J., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140–1160.PubMedPubMedCentralGoogle Scholar
  15. Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 683–702.PubMedGoogle Scholar
  16. Johnston, J. C., & Pashler, H. (1990). Close binding of identity and location in visual feature perception. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 843–856.PubMedGoogle Scholar
  17. Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1–1.Google Scholar
  18. Lara, A. H., & Wallis, J. D. (2014). Executive control processes underlying multi-item working memory. Nature Neuroscience. doi: 10.1038/nn.3702 PubMedGoogle Scholar
  19. Lavie, N., & Tsal, Y. (1988). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56(2), 183–197.Google Scholar
  20. Lee, D., & Chun, M. M. (2001). What are the units of visual short-term memory, objects or spatial locations? Perception & Psychophysics, 63(2), 253–257.CrossRefGoogle Scholar
  21. Logie, R. H., & Pearson, D. G. (1997). The inner eye and the inner scribe of visuo-spatial working memory: Evidence from developmental fractionation. European Journal of Cognitive Psychology, 9(3), 241–257.CrossRefGoogle Scholar
  22. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.PubMedCrossRefGoogle Scholar
  23. Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(2), 369.PubMedGoogle Scholar
  24. Maunsell, J. H., & van Essen, D. C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. The Journal of Neuroscience, 3(12), 2563–2586.PubMedGoogle Scholar
  25. Murray, A. M., Nobre, A. C., Clark, I. A., Cravo, A. M., & Stokes, M. G. (2013). Attention restores discrete items to visual short-term memory. Psychological Science, 24(4), 550–556.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Nissen, M. I. (1985). Accessing features and objects: Is location special? In M. I. Posner & O. S. M. Marin (Eds.), Attention and performance XI (pp. 205–219). Hillsdale, NJ: Erlbaum.Google Scholar
  27. Olson, I. R., & Marshuetz, C. (2005). Remembering “what” brings along “where” in visual working memory. Perception & Psychophysics, 67(2), 185–194.CrossRefGoogle Scholar
  28. Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.PubMedCrossRefGoogle Scholar
  29. Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2012a). Rapid forgetting prevented by retrospective attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1224–1231.PubMedPubMedCentralGoogle Scholar
  30. Pertzov, Y., Dong, M. Y., Peich, M. C., & Husain, M. (2012b). Forgetting what was where: The fragility of object-location binding. PloS One, 7(10), e48214.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Pertzov, Y., & Husain, M. (2013). The privileged role of location in visual working memory. Attention, Perception, & Psychophysics, 1-11.Google Scholar
  32. Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 23–38.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Pylyshyn, Z. (2004). Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Visual cognition, 11(7), 801–822.CrossRefGoogle Scholar
  34. Quinlan, P. T. (2003). Visual feature integration theory: past, present, and future. Psychological Bulletin, 129(5), 643.PubMedCrossRefGoogle Scholar
  35. Rajsic, J., & Wilson, D. E. (2012). Remembering where: Estimated memory for visual objects is better when retrieving location with colour. Visual Cognition, 20(9), 1036–1039.CrossRefGoogle Scholar
  36. Sligte, I. G., Scholte, H. S., & Lamme, V. A. (2008). Are there multiple visual short-term memory stores? PloS One, 3(2), e1699.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1295–1306.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Treisman, A., & Zhang, W. (2006). Location and binding in visual working memory. Memory & Cognition, 34(8), 1704–1719.CrossRefGoogle Scholar
  39. van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109(22), 8780–8785.CrossRefGoogle Scholar
  40. Van der Heijden, A. H. C. (1993). The role of position in object selection in vision. Psychological Research, 56(1), 44–58.PubMedCrossRefGoogle Scholar
  41. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92.PubMedGoogle Scholar
  42. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48.CrossRefGoogle Scholar
  43. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120–1135.PubMedCrossRefGoogle Scholar
  44. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of TorontoTorontoCanada
  2. 2.Department of PsychologyQueen’s UniversityKingstonCanada

Personalised recommendations