Attention, Perception, & Psychophysics

, Volume 76, Issue 5, pp 1335–1349 | Cite as

Infrequent identity mismatches are frequently undetected



The ability to quickly and accurately match faces to photographs bears critically on many domains, from controlling purchase of age-restricted goods to law enforcement and airport security. Despite its pervasiveness and importance, research has shown that face matching is surprisingly error prone. The majority of face-matching research is conducted under idealized conditions (e.g., using photographs of individuals taken on the same day) and with equal proportions of match and mismatch trials, a rate that is likely not observed in everyday face matching. In four experiments, we presented observers with photographs of faces taken an average of 1.5 years apart and tested whether face-matching performance is affected by the prevalence of identity mismatches, comparing conditions of low (10 %) and high (50 %) mismatch prevalence. Like the low-prevalence effect in visual search, we observed inflated miss rates under low-prevalence conditions. This effect persisted when participants were allowed to correct their initial responses (Experiment 2), when they had to verify every decision with a certainty judgment (Experiment 3) and when they were permitted “second looks” at face pairs (Experiment 4). These results suggest that, under realistic viewing conditions, the low-prevalence effect in face matching is a large, persistent source of errors.


Unfamiliar face matching Low-prevalence effect Signal detection 


  1. Bindemann, M., Avetisyan, M., & Blackwell, K. (2010). Finding needles in haystacks: Identity mismatch frequency and facial identity verification. Journal of Experimental Psychology: Applied, 16, 378–386. doi:10.1037/a0021893 PubMedGoogle Scholar
  2. Bindemann, M., & Sandford, A. (2011). Me, myself, and I: Different recognition rates for three photo-IDs of the same person. Perception, 40, 625–627.PubMedCrossRefGoogle Scholar
  3. Bruce, V., Henderson, Z., Greenwood, K., Hancock, P. J. B., Burton, A. M., & Miller, P. (1999). Verification of face identities from images captured on video. Journal of Experimental Psychology: Applied, 5, 339–360.Google Scholar
  4. Bruce, V., Henderson, Z., Newman, C., & Burton, A. M. (2001). Matching identities of familiar and unfamiliar faces caught on CCTV images. Journal of Experimental Psychology: Applied, 7, 305–327.Google Scholar
  5. Burton, A. M., Jenkins, R., Hancock, P. J. B., & White, D. (2005). Robust representations for face recognition: The power of averages. Cognitive Psychology, 51, 256–284.PubMedCrossRefGoogle Scholar
  6. Burton, A. M., White, D., & McNeill, A. (2010). The Glasgow Face Matching Test. Behavior Research Methods, 42, 286–291.PubMedCrossRefGoogle Scholar
  7. Burton, A. M., Wilson, S., Cowan, M., & Bruce, V. (1999). Face recognition in poor-quality video: Evidence from security surveillance. Psychological Science, 10, 243–248.CrossRefGoogle Scholar
  8. Clutterbuck, R., & Johnston, R. A. (2002). Exploring levels of face familiarity by using an indirect face-matching measure. Perception, 31, 985–994.PubMedCrossRefGoogle Scholar
  9. Davis, J. P., & Valentine, T. (2009). CCTV on trial: Matching video images with the defendant in the dock. Applied Cognitive Psychology, 23, 482–505.CrossRefGoogle Scholar
  10. Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Visual Cognition, 17, 195–211.Google Scholar
  11. Hancock, P. J. B., Bruce, V., & Burton, A. M. (2000). Recognition of unfamiliar faces. Trends in Cognitive Sciences, 4, 330–337.PubMedCrossRefGoogle Scholar
  12. Hill, H., & Bruce, V. (1996). The effects of lighting on the perception of facial surfaces. Journal of Experimental Psychology: Human Perception and Performance, 22, 986–1004.PubMedGoogle Scholar
  13. Jenkins, R., White, D., Van Montfort, X., & Burton, A. M. (2011). Variability in photos of the same face. Cognition, 121, 313–323.PubMedCrossRefGoogle Scholar
  14. Kemp, R., Towell, N., & Pike, G. (1997). When seeing should not be believing: Photographs, credit cards, and fraud. Applied Cognitive Psychology, 11, 211–222.CrossRefGoogle Scholar
  15. Lindsay, R. C. L., & Pozzulo, J. D. (1999). Sources of eyewitness identification errors. International Journal of Law and Psychiatry, 22, 347–360.PubMedCrossRefGoogle Scholar
  16. Malpass, R. S., & Devine, P. G. (1981). Eyewitness identification: Lineup instructions and the absence of the offender. Law and Human Behavior, 15, 43–57.Google Scholar
  17. Megreya, A. M., & Bindemann, M. (2009). Revisiting the processing of internal and external features of unfamiliar faces: The headscarf effect. Perception, 38, 1831–1848.PubMedCrossRefGoogle Scholar
  18. Megreya, A. M., Bindemann, M., & Havard, C. (2011). Sex differences in unfamiliar face identification: Evidence from matching tasks. Acta Psychologica, 137, 83–89. doi:10.1016/j.actpsy.2011.03.003 PubMedCrossRefGoogle Scholar
  19. Megreya, A. M., & Burton, A. M. (2006). Unfamiliar faces aren’t faces: Evidence from a matching task. Memory & Cognition, 34, 865–876.CrossRefGoogle Scholar
  20. Megreya, A. M., & Burton, A. M. (2007). Hits and false positives in face matching: A familiarity based dissociation. Perception & Psychophysics, 69, 1175–1184.CrossRefGoogle Scholar
  21. Megreya, A. M., & Burton, A. M. (2008). Matching faces to photographs: Poor performance in eyewitness memory (without the memory). Journal of Experimental Psychology: Applied, 14, 364–372.PubMedGoogle Scholar
  22. Özbek, M., & Bindemann, M. (2011). Exploring the time course of face matching: Temporal constraints impair unfamiliar face identification under temporally unconstrained viewing. Vision Research, 51, 2145–2155. doi:10.1016/j.visres.2011.08.009 PubMedCrossRefGoogle Scholar
  23. Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53, 195–237.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ratcliff, R., & Starns, J. J. (2009). Modeling confidence and response time in recognition memory. Psychological Review, 116, 59–83. doi:10.1037/a0014086 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Recinto, R. (2012). ‘Missing’ woman unknowingly joins search for herself. Retrieved from:
  26. Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8, 1–17. doi:10.1167/8.15.15 PubMedCrossRefGoogle Scholar
  27. Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people in a real-world inter- action. Psychonomic Bulletin and Review, 5, 644–649.CrossRefGoogle Scholar
  28. Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, some types of rare targets are frequently missed. Attention, Perception, & Psychophysics, 71, 541–553. doi:10.3758/APP.71.3.541 CrossRefGoogle Scholar
  29. Wells, G. L., & Olson, E. A. (2003). Eyewitness testimony. Annual Review of Psychology, 54, 277–295.PubMedCrossRefGoogle Scholar
  30. Winer, B. J. (1971). Statistical principles in experimental design. New York: McGraw-Hill.Google Scholar
  31. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items are often missed in visual searches. Nature, 435, 439–440.PubMedCrossRefGoogle Scholar
  32. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136, 623–638.CrossRefGoogle Scholar
  33. Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two, dissociable decision criteria in visual search. Current Biology, 20, 121–124. doi:10.1016/j.cub.2009.11.066 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Louisiana State UniversityBaton RougeUSA
  2. 2.Arizona State UniversityTempeUSA

Personalised recommendations