Can representational trajectory reveal the nature of an internal model of gravity?

Abstract

The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amorim, M. A., Lang, W., Lindinger, G., Mayer, D., Deecke, L., & Berthoz, A. (2000). Modulation of spatial orientation by mental imagery: A MEG study of representational momentum. Journal of Cognitive Neuroscience, 12, 569–582.

    PubMed  Article  Google Scholar 

  2. Angelaki, D. E., Shaikh, A. G., Green, A. M., & Dickman, J. D. (2004). Neurons compute internal models of the physical laws of motion. Nature, 430, 560–564.

    PubMed  Article  Google Scholar 

  3. Anstis, S., Verstraten, F., & Mather, G. (1998). The motion after-effect. Trends in Cognitive Sciences, 2, 111–117.

    PubMed  Article  Google Scholar 

  4. Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia, 42, 1515–1524.

    PubMed  Article  Google Scholar 

  5. Baurès, R., & Hecht, H. (2011). The effect of body posture on long-range time-to-contact estimation. Perception, 40, 674–681.

    PubMed  Article  Google Scholar 

  6. Blättler, C., Ferrari, V., Didierjean, A., & Marmèche, E. (2011). Representational momentum in aviation. Journal of Experimental Psychology: Human Perception and Performance, 37, 1569–1577.

    PubMed  Google Scholar 

  7. Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16, 476–491.

    PubMed  Article  Google Scholar 

  8. Carpenter-Smith, T. R., Futamura, R. G., & Parker, D. E. (1995). Inertial acceleration as a measure of linear vection: An alternative to magnitude estimation. Perception and Psychophysics, 57, 35–42.

    PubMed  Article  Google Scholar 

  9. Chen, A., DeAngelis, G. C., & Angelaki, D. E. (2011). A comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area. Journal of Neuroscience, 31, 3082–3094.

    PubMed Central  PubMed  Article  Google Scholar 

  10. Chen, A., Henry, E., DeAngelis, G. C., & Angelaki, D. E. (2007). Comparison of responses to three-dimensional rotation and translation in the ventral intraparietal (VIP) and medial superior temporal (MST) areas of rhesus monkey. Society of Neuroscience Abstracts, 33, 715–719.

    Google Scholar 

  11. De Sá Teixeira, N. A, Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39, 1690–1699.

  12. De Sá Teixeira, N. A., & Oliveira, A. M. (2011). Disambiguating the effects of target travelled distance and target vanishing point upon representational momentum. Journal of Cognitive Psychology, 23, 650–658.

    Article  Google Scholar 

  13. Duffy, C. J., & Wurtz, R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli. Journal of Neurophysiology, 65, 1329–1345.

    PubMed  Google Scholar 

  14. Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology, 65, 1346–1359.

    PubMed  Google Scholar 

  15. Edwards, M., & Badcock, D. R. (1998). Discrimination of global-motion signal strength. Vision Research, 38, 3051–3056.

    PubMed  Article  Google Scholar 

  16. Farrell, M. J., & Robertson, I. H. (1998). Mental rotation and automatic updating of body-centered spatial relationships. Journal of Experimental Psychology: Learning, Memory, & Cognition, 24, 227–233.

    Google Scholar 

  17. Fischer, M. H., & Kornmüller, A. E. (1930). Optokinetisch ausgelöste Bewegungswahrnehmung und optokinetischer Nystagmus [Optokinetically induced motion perception and optokinetic nystagmus]. Journal für Psychologie und Neurologie, 273–308.

  18. Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33, 575–581.

    Article  Google Scholar 

  19. Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126–132.

    Google Scholar 

  20. Freyd, J. J., & Finke, R. A. (1985). A velocity effect for representational momentum. Bulletin of the Psychonomic Society, 23, 443–446.

    Article  Google Scholar 

  21. Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 259–269.

    PubMed  Google Scholar 

  22. Grush, R. (2005). Internal models and the construction of time: Generalizing from state estimation to trajectory estimation to address temporal features of perception, including temporal illusions. Journal of Neural Engineering, 2, S209–S218.

    PubMed  Article  Google Scholar 

  23. Gu, Y., Angelaki, D. E., & DeAngelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience, 11, 1201–1210.

    PubMed Central  PubMed  Article  Google Scholar 

  24. Haji-Khamneh, B., & Harris, L. R. (2010). How different types of scenes affect the subjective visual vertical (SVV) and the perceptual upright (PU). Vision Research, 50, 1720–1727.

    PubMed  Article  Google Scholar 

  25. Hess, B. J., & Angelaki, D. E. (1999). Oculomotor control of primary eye position discriminates between translation and tilt. Journal of Neurophysiology, 81, 394–398.

    PubMed  Google Scholar 

  26. Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory & Cognition, 18, 299–309.

    Article  Google Scholar 

  27. Hubbard, T. L. (2001). The effect of height in the picture plane on the forward displacement of ascending and descending targets. Canadian Journal of Experimental Psychology, 55, 325–330.

    PubMed  Article  Google Scholar 

  28. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822–851.

    Article  Google Scholar 

  29. Hubbard, T. L. (2006). Computational theory and cognition in representational momentum and related types of displacement: A reply to Kerzel. Psychonomic Bulletin and Review, 13, 174–177.

    Article  Google Scholar 

  30. Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211–221.

    Article  Google Scholar 

  31. Hubbard, T. L., & Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychological Research, 64, 41–55.

    PubMed  Article  Google Scholar 

  32. Johansson, G. (1977). Studies on the visual perception of locomotion. Perception, 6, 365–376.

    PubMed  Article  Google Scholar 

  33. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40, 3703–3715.

    PubMed  Article  Google Scholar 

  34. Kerzel, D. (2002). Memory for the position of stationary targets: Disentangling foveal bias and memory averaging. Vision Research, 42, 159–167.

    PubMed  Article  Google Scholar 

  35. Kerzel, D. (2003). Centripetal force draws the eyes, not memory of the target, toward the center. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 458–466.

    PubMed  Google Scholar 

  36. Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”. Psychonomic Bulletin & Review, 13, 166–173.6.

    Article  Google Scholar 

  37. Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978.

    PubMed  Article  Google Scholar 

  38. Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829–840.

    PubMed  Google Scholar 

  39. Klier, E. M., & Angelaki, D. E. (2008). Spatial updating and the maintenance of visual constancy. Neuroscience, 156, 801–818.

    PubMed Central  PubMed  Article  Google Scholar 

  40. Land, M., & Tatler, B. (2009). Looking and Acting. Oxford: University Press.

    Google Scholar 

  41. Mather, G. (1980). The movement aftereffect and a distribution-shift model for coding the direction of visual movement. Perception, 9, 379–392.

    PubMed  Article  Google Scholar 

  42. Mather, G., & Harris, J. (1998). Theoretical models of the motion aftereffect. In G. Mather, F. Verstraten, & S. Anstis (Eds.), The motion aftereffect: A modern perspective (pp. 157–184). Cambridge: The MIT Press.

    Google Scholar 

  43. McIntyre, J., Zago, M., Berthoz, A., & Lacquaniti, F. (2001). Does the brain model Newton’s laws? Nature Neuroscience, 4, 693–694.

    PubMed  Article  Google Scholar 

  44. Merfeld, D. M. (1995). Modelling the vestibule-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Experimental Brain Research, 106, 123–134.

    PubMed  Article  Google Scholar 

  45. Merfeld, D. M., Zupan, L., & Peterka, R. J. (1999). Humans use internal models to estimate gravity and linear acceleration. Nature, 398, 615–618.

    PubMed  Article  Google Scholar 

  46. Mitrani, L., & Dimitrov, G. (1978). Pursuit eye movements of a disappearing moving target. Vision Research, 18, 537–539.

    PubMed  Article  Google Scholar 

  47. Mittelstaedt, H. (1983). A new solution to the problem of the subjective vertical. Naturwissenschaften, 70, 272–281.

    PubMed  Article  Google Scholar 

  48. Mittelstaedt, H. (1986). The subjective vertical as a function of visual and extraretinal cues. Acta Psychologica, 63, 63–85.

    PubMed  Article  Google Scholar 

  49. Müsseler, J., van der Heijden, A. H. C., Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalization of briefly presented stimuli in the retinal periphery. Perception & Psychophysics, 61, 1646–1661.

    Article  Google Scholar 

  50. Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward memory displacement in the direction of gravity. Visual Cognition, 9, 28–40.

    Article  Google Scholar 

  51. Orban, G. A., Lagae, L., Raiguel, S., Xiao, D., & Maes, H. (1995). The speed tuning of medial superior temporal (MST) cell responses to optic-flow components. Perception, 24, 269–285.

    PubMed  Article  Google Scholar 

  52. Pola, J., & Wyatt, H. J. (1997). Offset dynamics of human smooth pursuit eye movements: effects of target presence and subject attention. Vision Research, 37, 2579–2595.

    PubMed  Article  Google Scholar 

  53. Poon, C.-S., & Merfeld, D. M. (2005). Internal models: the state of the art, Journal of Neural Engineering, 2, editorial.

  54. Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 22, 839–850.

    PubMed  Google Scholar 

  55. Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 1157–1165.

    Google Scholar 

  56. Shepard, R. N. (2001). Perceptual-cognitive universals as reflections of the world. Behavioral Brain Sciences, 24, 581–601.

    PubMed  Google Scholar 

  57. Sheth, B. R., & Shimojo, S. (2001). Compression of space in visual memory. Vision Research, 41, 329–341.

    PubMed  Article  Google Scholar 

  58. Snyder, L. (1999). This way up: illusions and the internal models in the vestibular system. Nature Neuroscience, 2, 396–398.

    PubMed  Article  Google Scholar 

  59. Takahashi, K., Gu, Y., May, P. J., Newlands, S. D., DeAngelis, G. C., & Angelaki, D. E. (2007). Multimodal coding of three-dimensional rotation and translation in area MSTd: Comparison of visual and vestibular selectivity. Journal of Neuroscience, 27, 9742–9756.

    PubMed Central  PubMed  Article  Google Scholar 

  60. Tarita-Nistor, L., González, E. G., Spigelman, A. J., & Steinbach, M. J. (2006). Linear vection as a function of stimulus eccentricity, visual angle, and fixation. Journal of Vestibular Reserch, 16, 265–272.

    Google Scholar 

  61. Telford, L., & Frost, B. J. (1993). Factors affecting the onset and magnitude of linear vection. Perception & Psychophysics, 53, 682–692.

    Article  Google Scholar 

  62. Telford, L., Spratley, J., & Frost, B. J. (1992). Linear vection in the central visual field facilitated by kinetic depth cues. Perception, 21, 337–349.

    PubMed  Article  Google Scholar 

  63. Tin, C., & Poon, C.-S. (2005). Internal models in sensorimotor integration: Perspectives from adaptive control theory. Journal of Neural Engineering, 2, S147–S163.

    PubMed Central  PubMed  Article  Google Scholar 

  64. Wan, X. I., Wang, R. F., & Crowell, J. A. (2009). Spatial updating in superimposed real and virtual environments. Attention, Perception, & Psychophysics, 71, 42–51.

    Article  Google Scholar 

  65. Zhang, T., & Britten, K. H. (2010). The responses of VIP neurons are sufficiently sensitive to support heading judgments. Journal of Neurophysiology, 103, 1865–1873.

    PubMed Central  PubMed  Article  Google Scholar 

  66. Zhang, T., Heuer, H. W., & Britten, K. H. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron, 42, 993–1001.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant SFRH/BPD/84118/2012, Portuguese Foundation for Science and Technology (FCT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuno De Sá Teixeira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Sá Teixeira, N., Hecht, H. Can representational trajectory reveal the nature of an internal model of gravity?. Atten Percept Psychophys 76, 1106–1120 (2014). https://doi.org/10.3758/s13414-014-0626-2

Download citation

Keywords

  • Internal model
  • Representational momentum
  • Representational gravity
  • Motion perception
  • Eye movements