Detecting meaning in RSVP at 13 ms per picture

Abstract

The visual system is exquisitely adapted to the task of extracting conceptual information from visual input with every new eye fixation, three or four times a second. Here we assess the minimum viewing time needed for visual comprehension, using rapid serial visual presentation (RSVP) of a series of six or 12 pictures presented at between 13 and 80 ms per picture, with no interstimulus interval. Participants were to detect a picture specified by a name (e.g., smiling couple) that was given just before or immediately after the sequence. Detection improved with increasing duration and was better when the name was presented before the sequence, but performance was significantly above chance at all durations, whether the target was named before or only after the sequence. The results are consistent with feedforward models, in which an initial wave of neural activity through the ventral stream is sufficient to allow identification of a complex visual stimulus in a single forward pass. Although we discuss other explanations, the results suggest that neither reentrant processing from higher to lower levels nor advance information about the stimulus is necessary for the conscious detection of rapidly presented, complex visual information.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Because of the relatively large number of replaced participants in Experiment 2’s after group, we also ran the main d' analysis with the original 16 participants. Although d' was slightly lower with the original group than with the replaced participants, none of the significance levels changed, including the comparison with the before group.

References

  1. Bacon-Macé, N., Kirchner, H., Fabre-Thorpe, M., & Thorpe, S. J. (2007). Effects of task requirements on rapid natural scene processing: From common sensory encoding to distinct decisional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 33, 1013–1026. doi:10.1037/0096-1523.33.5.1013

    PubMed  Google Scholar 

  2. Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103, 449–454. doi:10.1073/pnas.0507062103

    Article  Google Scholar 

  3. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357

    Article  PubMed  Google Scholar 

  4. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10(4):16, 1–17. doi:10.1167/10.4.16

    Google Scholar 

  5. Cukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. I. (2013). Attention during natural vision warps semantic representation across the human brain. Nature Neuroscience, 16, 763–770.

    PubMed Central  Article  PubMed  Google Scholar 

  6. Dehaene, S., Kergsberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences, 95, 14529–14534.

    Article  Google Scholar 

  7. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79, 1–37. doi:10.1016/S0010-0277(00)00123-2

    Article  PubMed  Google Scholar 

  8. Dehaene, S., Naccache, L., Cohen, L., LeBihan, D., Mangin, J. F., Poline, J.-B., & Rivière, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4, 752–758. doi:10.1038/89551

    Article  PubMed  Google Scholar 

  9. Dehaene, S., Sergent, C., & Changeux, J.-P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences, 100, 8520–8525.

    Article  Google Scholar 

  10. Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biology, 5, 2408–2423.

    Google Scholar 

  11. DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73, 415–434. doi:10.1016/j.neuron.2012.01.010

    PubMed Central  Article  PubMed  Google Scholar 

  12. Di Lollo, V. (2012). The feature-binding problem is an ill-posed problem. Trends in Cognitive Sciences, 16, 317–321.

    Article  PubMed  Google Scholar 

  13. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual pathways. Journal of Experimental Psychology: General, 129, 481–507. doi:10.1037/0096-3445.129.4.481

    Article  Google Scholar 

  14. Enns, J. T., & Di Lollo, V. (2000). What’s new in visual masking? Trends in Cognitive Sciences, 4, 345–352. doi:10.1016/S1364-6613(00)01520-5

    Article  PubMed  Google Scholar 

  15. Evans, K. K., Horowitz, T. S., & Wolfe, J. W. (2011). When categories collide: Accumulation of information about multiple categories in rapid scene perception. Psychological Science, 22, 739–746. doi:10.1177/0956797611407930

    PubMed Central  Article  PubMed  Google Scholar 

  16. Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual categorization. Frontiers in Psychology, 2, 243. doi:10.3389/fpsyg.2011.00243

    PubMed Central  Article  PubMed  Google Scholar 

  17. Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698. doi:10.1037/0278-7393.10.4.680

    Google Scholar 

  18. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804.

    Article  PubMed  Google Scholar 

  19. Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object identity from macaque inferior temporal cortex. Science, 310, 863–866.

    Article  PubMed  Google Scholar 

  20. Intraub, H. (1981). Rapid conceptual identification of sequentially presented pictures. Journal of Experimental Psychology: Human Perception and Performance, 7, 604–610. doi:10.1037/0096-1523.7.3.604

    Google Scholar 

  21. Intraub, H. (1984). Conceptual masking: The effects of subsequent visual events on memory for pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 115–125. doi:10.1037/0278-7393.10.1.115

    PubMed  Google Scholar 

  22. Keysers, C., Xiao, D.-K., Földiák, P., & Perrett, D. I. (2001). The speed of sight. Journal of Cognitive Neuroscience, 13, 90–101.

    Article  PubMed  Google Scholar 

  23. Keysers, C., Xiao, D.-K., Földiák, P., & Perrett, D. I. (2005). Out of sight but not out of mind: The neurophysiology of iconic memory in the superior temporal sulcus. Cognitive Neuropsychology, 22, 316–332.

    Article  PubMed  Google Scholar 

  24. Kovacs, G., Vogels, R., & Orban, G. A. (1995). Cortical correlate of backward masking. Proceedings of the National Academy of Sciences, 92, 5587–5591.

    Article  Google Scholar 

  25. Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10, 494–501. doi:10.1016/j.tics.2006.09.001

    Article  PubMed  Google Scholar 

  26. Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579. doi:10.1016/S0166-2236(00)01657-X

    Article  PubMed  Google Scholar 

  27. Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron, 62, 281–290.

    PubMed Central  Article  PubMed  Google Scholar 

  28. Llinás, R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philosophical Transactions of the Royal Society B, 353, 1841–1849.

    Article  Google Scholar 

  29. Loftus, G. R., Hanna, A. M., & Lester, L. (1988). Conceptual masking: How one picture captures attention from another picture. Cognitive Psychology, 20, 237–282. doi:10.1016/0010-0285(88)90020-5

    Article  PubMed  Google Scholar 

  30. Loschky, L. C., Hansen, B. C., Sethi, A., & Pydimarri, T. N. (2010). The role of higher order image statistics in masking scene gist recognition. Attention, Perception, & Psychophysics, 72, 427–444. doi:10.3758/APP.72.2.427

    Article  Google Scholar 

  31. Macknik, S. L., & Martinez-Conde, S. (2007). The role of feedback in visual masking and visual processing. Advances in Cognitive Psychology, 3, 125–152.

    PubMed Central  Article  Google Scholar 

  32. McKeeff, T. J., Remus, D. A., & Tong, F. (2007). Temporal limitations in object processing across the human ventral visual pathway. Journal of Neurophysiology, 98, 382–393.

    Article  PubMed  Google Scholar 

  33. Moore, C. M., & Wolfe, J. M. (2001). Getting beyond the serial/parallel debate in visual search: A hybrid approach. In K. Shapiro (Ed.), The limits of attention: Temporal constraints on human information processing (pp. 178–198). Oxford, UK: Oxford University Press.

    Google Scholar 

  34. Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences, 108, 12125–12130.

    Article  Google Scholar 

  35. Perrett, D., Hietanen, J., Oram, M., & Benson, P. (1992). Organization and functions of cells responsive to faces in the temporal cortex. Philosophical Transactions of the Royal Society B, 335, 23–30.

    Article  Google Scholar 

  36. Potter, M. C. (1975). Meaning in visual search. Science, 187, 965–966. doi:10.1126/science.1145183

    Article  PubMed  Google Scholar 

  37. Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2, 509–522.

    Google Scholar 

  38. Potter, M. C., & Levy, E. I. (1969). Recognition memory for a rapid sequence of pictures. Journal of Experimental Psychology, 81, 10–15. doi:10.1037/h0027470

    Article  PubMed  Google Scholar 

  39. Potter, M. C., Staub, A., Rado, J., & O’Connor, D. H. (2002). Recognition memory for briefly-presented pictures: The time course of rapid forgetting. Journal of Experimental Psychology: Human Perception and Performance, 28, 1163–1175. doi:10.1037/0096-1523.28.5.1163

    PubMed  Google Scholar 

  40. Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., & Poggio, T. (2007a). A quantitative theory of immediate visual recognition. Progress in Brain Research, 165, 33–56.

    Article  PubMed  Google Scholar 

  41. Serre, T., Oliva, A., & Poggio, T. (2007b). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104, 6424–6429.

    Article  Google Scholar 

  42. Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400, 869–873.

    Article  PubMed  Google Scholar 

  43. Thorpe, S., & Fabre-Thorpe, M. (2001). Seeking categories in the brain. Science, 291, 260–263.

    Article  PubMed  Google Scholar 

  44. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.

    Article  PubMed  Google Scholar 

  45. Tononi, G., & Koch, C. (2008). The neural correlates of consciousness: An update. Annals of the New York Academy of Sciences, 1124, 239–261.

    Article  PubMed  Google Scholar 

  46. Wolfe, J. M. (2003). Moving towards solutions to some enduring controversies in visual search. Trends in Cognitive Science, 7, 70–76.

    Google Scholar 

Download references

Author note

This research was supported by National Institutes of Health Grant No. MH47432. M.C.P. developed the study concept. All of the authors contributed to the study design. The testing, data collection, and data analysis were performed by E.S.M. and C.E.H. under the supervision of M.C.P. and B.W. M.C.P. drafted the article, and B.W. and C.E.H. provided critical revisions. All of the authors approved the final version of the article for submission. We thank Chidinma Egbukichi and Steven Yu for assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mary C. Potter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 85 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Potter, M.C., Wyble, B., Hagmann, C.E. et al. Detecting meaning in RSVP at 13 ms per picture. Atten Percept Psychophys 76, 270–279 (2014). https://doi.org/10.3758/s13414-013-0605-z

Download citation

Keywords

  • Picture perception
  • Feedforward processing
  • Attentional set
  • Conscious perception
  • Conceptual processing