Skip to main content

Sensorimotor synchronization: A review of the tapping literature

Abstract

Sensorimotor synchronization (SMS), the rhythmic coordination of perception and action, occurs in many contexts, but most conspicuously in music performance and dance. In the laboratory, it is most often studied in the form of finger tapping to a sequence of auditory stimuli. This review summarizes theories and empirical findings obtained with the tapping task. Its eight sections deal with the role of intention, rate limits, the negative mean asynchrony, variability, models of error correction, perturbation studies, neural correlates of SMS, and SMS in musical contexts. The central theoretical issue is considered to be how best to characterize the perceptual information and the internal processes that enable people to achieve and maintain SMS. Recent research suggests that SMS is controlled jointly by two error correction processes (phase correction and period correction) that differ in their degrees of cognitive control and may be associated with different brain circuits. They exemplify the general distinction between subconscious mechanisms of action regulation and conscious processes involved in perceptual judgment and action planning.

References

  • Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization.Brain & Cognition,48, 66–79.

    Google Scholar 

  • Aschersleben, G. (2003). Effects of training on the timing of repetitive movements. In S. P. Shohov (Ed.),Advances in psychology research (Vol. 23, pp. 15–30). Huntington, NY: Nova Science.

    Google Scholar 

  • Aschersleben, G., &Bertelson, P. (2003). Temporal ventriloquism: Crossmodal interaction on the time dimension: 2. Evidence from sensorimotor synchronization.International Journal of Psychophysiology,50, 157–163.

    PubMed  Google Scholar 

  • Aschersleben, G., Gehrke, J., &Prinz, W. (2001). Tapping with peripheral nerve block: A role for tactile feedback in the timing of movements.Experimental Brain Research,136, 331–339.

    Google Scholar 

  • Aschersleben, G., Gehrke, J., &Prinz, W. (2004). A psychophysical approach to action timing. In C. Kaernbach, E. Schröger, & H. Müller (Eds.),Psychophysics beyond sensation: Laws and invariants of human cognition (pp. 117–136). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Aschersleben, G., &Prinz, W. (1995). Synchronizing actions with events: The role of sensory information.Perception & Psychophysics,57, 305–317.

    Google Scholar 

  • Aschersleben, G., &Prinz, W. (1997). Delayed auditory feedback in synchronization.Journal of Motor Behavior,29, 35–46.

    PubMed  Google Scholar 

  • Aschersleben, G., Stenneken, P., Cole, J., &Prinz, W. (2002). Timing mechanisms in sensorimotor synchronization. In W. Prinz & B. Hommel (Eds.),Common mechanisms in perception and action: Attention and performance XIX (pp. 227–244). Oxford: Oxford University Press.

    Google Scholar 

  • Balasubramaniam, R., Wing, A. M., &Daffertshofer, A. (2004). Keeping with the beat: Movement trajectories contribute to movement timing.Experimental Brain Research,159, 129–134.

    Google Scholar 

  • Barnes, R., &Jones, M. R. (2000). Expectancy, attention, and time.Cognitive Psychology,41, 254–311.

    PubMed  Google Scholar 

  • Bartlett, N. R., &Bartlett, S. C. (1959). Synchronization of a motor response with an anticipated sensory event.Psychological Review,66, 203–218.

    PubMed  Google Scholar 

  • Billon, M., Bard, C., Fleury, M., Blouin, J., &Teasdale, N. (1996). Simultaneity of two effectors in synchronization with a periodic external signal.Human Movement Science,15, 25–38.

    Google Scholar 

  • Billon, M., Semjen, A., Cole, J., &Gauthier, G. (1996). The role of sensory information in the production of periodic finger-tapping sequences.Experimental Brain Research,110, 117–130.

    Google Scholar 

  • Bolton, T. L. (1894). Rhythm.American Journal of Psychology,6, 145–238.

    Google Scholar 

  • Buck, J., &Buck, E. (1968). Mechanism of rhythmic synchronous flashing of fireflies: Fireflies of Southeast Asia may use anticipatory time-meaning in synchronizing their flashing.Science,159, 1319–1327.

    PubMed  Google Scholar 

  • Carver, F. W., Fuchs, A., Jantzen, K. J., &Kelso, J. A. S. (2002). Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: Rate dependence and transient to steady-state transition.Clinical Neurophysiology,113, 1921–1931.

    PubMed  Google Scholar 

  • Caspi, A. (2002).The synchronization error: Attentional and timing aspects. Unpublished doctoral dissertation, Tel Aviv University, Israel.

    Google Scholar 

  • Chen, Y., Ding, M., &Kelso, J. A. S. (1997). Long memory processes (1/fα type) in human coordination.Physical Review Letters,79, 4501–4504.

    Google Scholar 

  • Chen, Y., Ding, M., &Kelso, J. A. S. (2001). Origins of timing errors in human sensorimotor coordination.Journal of Motor Behavior,33, 3–8.

    PubMed  Google Scholar 

  • Chen, Y., Ding, M., &Kelso, J. A. S. (2003). Task-related power and coherence changes in neuromagnetic activity during visuomotor coordination.Experimental Brain Research,148, 105–116.

    Google Scholar 

  • Chen, Y., Repp, B. H., &Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: Comparisons between auditory and visual pacing and feedback conditions.Human Movement Science,21, 515–532.

    PubMed  Google Scholar 

  • Collier, G. L., &Ogden, R. T. (2004). Adding drift to the decomposition of simple isochronous tapping: An extension of the Wing— Kristofferson model.Journal of Experimental Psychology: Human Perception & Performance,30, 853–872.

    Google Scholar 

  • Collyer, C. E., Boatright-Horowitz, S. S., &Hooper, S. (1997). A motor timing experiment implemented using a musical instrument digital interface (MIDI) approach.Behavior Research Methods, Instruments, & Computers,29, 346–352.

    Google Scholar 

  • Collyer, C. E., Broadbent, H. A., &Church, R. M. (1992). Categorical time production: Evidence for discrete timing in motor control.Perception & Psychophysics,51, 134–144.

    Google Scholar 

  • Collyer, C. E., Broadbent, H. A., &Church, R. M. (1994). Preferred rates of repetitive tapping and categorical time production.Perception & Psychophysics,55, 443–453.

    Google Scholar 

  • Craig, J. C. (1973). A constant error in the perception of brief temporal intervals.Perception & Psychophysics,13, 99–104.

    Google Scholar 

  • Delignières, D., Lemoine, L., &Torre, K. (2004). Time intervals production in tapping and oscillatory motion.Human Movement Science,23, 87–103.

    PubMed  Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?Neural Networks,12, 961–974.

    PubMed  Google Scholar 

  • Drake, C., Jones, M. R., &Baruch, C. (2000). The development of rhythmic attending in auditory sequences: Attunement, referent period, focal attending.Cognition,77, 251–288.

    PubMed  Google Scholar 

  • Drake, C., Penel, A., &Bigand, E. (2000). Tapping in time with mechanically and expressively performed music.Music Perception,18, 1–23.

    Google Scholar 

  • nDrewing, K., Li, S.-C., & Aschersleben, G. (in press). Sensorimotor synchronization across the life span.International Journal of Behavioral Development.

  • Dunlap, K. (1910). Reactions to rhythmic stimuli, with attempt to synchronize.Psychological Review,17, 399–416.

    Google Scholar 

  • Engbert, R., Krampe, R. T., Kurths, J., &Kliegl, R. (2002). Synchronizing movements with the metronome: Nonlinear error correction and unstable periodic orbits.Brain & Cognition,48, 107–116.

    Google Scholar 

  • Engström, D. A., Kelso, J. A. S., &Holroyd, T. (1996). Reaction— anticipation transitions in human perception—action patterns.Human Movement Science,15, 809–832.

    Google Scholar 

  • Fraisse, P. (1948). Rythmes auditifs et rythmes visuels [Visual and auditory rhythms].L’Année Psychologique,49, 21–41.

    Google Scholar 

  • Fraisse, P. (1966). L’anticipation de stimulus rythmiques: Vitesse d’établissement et précision de la synchronisation [Anticipation of rhythmic stimuli: Speed of establishment and precision of synchronization].L’Année Psychologique,66, 15–36.

    PubMed  Google Scholar 

  • Fraisse, P. (1974). Cues in sensori-motor synchronization. In L. E. Scheving, F. Halberg, & J. E. Pauly (Eds.),Chronobiology (pp. 517–522). Tokyo: Igaku Shoin.

    Google Scholar 

  • Fraisse, P. (1980). Les synchronizations sensori-motrices aux rythmes [Sensorimotor synchronization to rhythms]. In J. Requin (Ed.),Anticipation et comportement (pp. 233–257). Paris: Centre National de la Recherche Scientifique.

    Google Scholar 

  • Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.),The psychology of music (pp. 149–180). Orlando, FL: Academic Press.

    Google Scholar 

  • Fraisse, P., &Ehrlich, S. (1955). Note sur la possibilité de syncoper en fonction du tempo d’une cadence [Note on the possibility of syncopation as a function of sequence tempo].L’Année Psychologique,55, 61–65.

    PubMed  Google Scholar 

  • Fraisse, P., Oléron, G., &Paillard, J. (1958). Sur les repéres sensoriels qui permettent de contrôler les mouvements d’accompagnement de stimuli périodiques [On the sensory data that enable control of movements that accompany periodic stimuli].L’Année Psychologique,58, 322–338.

    Google Scholar 

  • Franek, M., Mates, J., Radil, T., Beck, K., &Pöppel, E. (1994). Sensorimotor synchronization: Motor responses to pseudoregular auditory patterns.Perception & Psychophysics,55, 204–217.

    Google Scholar 

  • Franek, M., Radil, T., &Indra, M. (1988). Tracking irregular acoustic patterns by finger tapping.International Journal of Psychophysiology,6, 327–330.

    PubMed  Google Scholar 

  • Friberg, A., &Sundberg, J. (1995). Time discrimination in a monotonic, isochronous sequence.Journal of the Acoustical Society of America,98, 2524–2531.

    Google Scholar 

  • Friberg, A., &Sundström, A. (2002). Swing ratios and ensemble timing in jazz performance: Evidence for a common rhythmic pattern.Music Perception,19, 333–349.

    Google Scholar 

  • Gérard, C., &Rosenfeld, M. (1995). Pratique musicale et régulations temporelles [Musical expertise and temporal regulation].L’Année Psychologique,95, 571–591.

    Google Scholar 

  • Gerloff, C., Richard, J., Hadley, J., Schulman, A. E., Honda, M., &Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.Brain,121, 1513–1531.

    PubMed  Google Scholar 

  • Getty, D. J. (1975). Discrimination of short temporal intervals: A comparison of two models.Perception & Psychophysics,18, 1–8.

    Google Scholar 

  • Gilden, D. L. (2001). Cognitive emissions of 1/f noise.Psychological Review,108, 33–56.

    PubMed  Google Scholar 

  • Gilden, D. L., Thornton, T., &Mallon, M. W. (1995). 1/f noise in human cognition.Science,267, 1837–1839.

    PubMed  Google Scholar 

  • Goldfarb, J. L., &Goldstone, S. (1963). Time judgment: A comparison of filled and unfilled durations.Perceptual & Motor Skills,16, 376.

    Google Scholar 

  • Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., &Schnitzler, A. (2002). The neural basis of intermittent motor control in humans.Proceedings of the National Academy of Sciences,99, 2299–2302.

    Google Scholar 

  • Haken, H., Kelso, J. A. S., &Bunz, H. (1985). A theoretical model of phase transitions in human hand movements.Biological Cybernetics,51, 347–356.

    PubMed  Google Scholar 

  • Handel, S., &Lawson, G. R. (1983). The contextual nature of rhythmic interpretation.Perception & Psychophysics,34, 103–120.

    Google Scholar 

  • Handel, S., &Oshinsky, J. S. (1981). The meter of syncopated auditory polyrhythms.Perception & Psychophysics,30, 1–9.

    Google Scholar 

  • Hary, D., &Moore, G. P. (1985). Temporal tracking and synchronization strategies.Human Neurobiology,4, 73–77.

    PubMed  Google Scholar 

  • Hary, D., &Moore, G. P. (1987a). On the performance and stability of human metronome-synchronization strategies.British Journal of Mathematical & Statistical Psychology,40, 109–124.

    Google Scholar 

  • Hary, D., &Moore, G. P. (1987b). Synchronizing human movement with an external clock source.Biological Cybernetics,56, 305–311.

    PubMed  Google Scholar 

  • Hasan, M. A., &Thaut, M. H. (1999). Autoregressive moving average modeling for finger tapping with an external stimulus.Perceptual & Motor Skills,88, 1331–1346.

    Google Scholar 

  • Hiriartborde, E., &Fraisse, P. (1968).Les aptitudes rythmiques [Rhythmic skills]. Paris: Centre National de la Recherche Scientifique.

    Google Scholar 

  • Ivry, R. B. (1997). Cerebellar timing systems.International Review of Neurobiology,41, 555–573.

    PubMed  Google Scholar 

  • Ivry, R. B., Keele, S. W., &Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution.Experimental Brain Research,73, 167–180.

    Google Scholar 

  • Jagacinski, R. J., &Flach, J. M. (2003).Control theory for humans: Quantitative approaches to modeling performance. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Jäncke, L., Loose, R., Lutz, K., Specht, K., &Shah, N. J. (2000). Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli.Cognitive Brain Research,10, 51–66.

    PubMed  Google Scholar 

  • Jantzen, K. J., Steinberg, F. L., &Kelso, J. A. S. (2002). Practicedependent modulation of neural activity during human sensorimotor coordination: A functional magnetic resonance imaging study.Neuroscience Letters,332, 205–209.

    PubMed  Google Scholar 

  • Jantzen, K. J., Steinberg, F. L., &Kelso, J. A. S. (2004). Brain networks underlying human timing behavior are influenced by prior context.Proceedings of the National Academy of Sciences,101, 6815–6820.

    Google Scholar 

  • Jones, M. R., &Pfordresher, P. Q. (1997). Tracking musical patterns using joint accent structure.Canadian Journal of Experimental Psychology,51, 271–290.

    Google Scholar 

  • Keele, S. W., &Hawkins, H. L. (1982). Explorations of individual differences relevant to high level skill.Journal of Motor Behavior,14, 3–23.

    PubMed  Google Scholar 

  • Keele, S. W., Pokorny, R. A., Corcos, D. M., &Ivry, R. (1985). Do perception and motor production share common timing mechanisms: A correctional analysis.Acta Psychologica,60, 173–191.

    PubMed  Google Scholar 

  • Keller, P. [E.] (1999). Attending in complex musical interactions: The adaptive dual role of meter.Australian Journal of Psychology,51, 166–175.

    Google Scholar 

  • Keller, P. E. (2001). Attentional resource allocation in musical ensemble performance.Psychology of Music,29, 20–38.

    Google Scholar 

  • Keller, P. E., &Burnham, D. K. (2005). Musical meter in attention to multipart rhythm.Music Perception,22, 629–661.

    Google Scholar 

  • Keller, P. E., Knoblich, G., & Repp, B. H. (in press). Pianists duet better when they play with themselves: How action simulation mediates synchronization.Consciousness & Cognition.

  • Keller, P. E., &Repp, B. H. (2004). When two limbs are weaker than one: Sensorimotor syncopation with alternating hands.Quarterly Journal of Experimental Psychology,57A, 1085–1101.

    Google Scholar 

  • Keller, P. E., &Repp, B. H. (2005). Staying offbeat: Sensorimotor syncopation with structured and unstructured auditory sequences.Psychological Research,69, 292–309.

    PubMed  Google Scholar 

  • Kelso, J. A. S., DelColle, J. D., &Schöner, G. (1990). Actionperception as a pattern formation process. In M. Jeannerod (Ed.),Attention and performance XIII: Motor representation and control (pp. 139–169). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kelso, J. A. S., Fuchs, A., Lancaster, R., Holroyd, T., Cheyne, D., &Weinberg, H. (1998). Dynamic cortical activity in the human brain reveals motor equivalence.Nature,392, 814–818.

    PubMed  Google Scholar 

  • Klemmer, E. T. (1957). Rhythmic disturbances in a simple visual—motor task.American Journal of Psychology,70, 56–63.

    PubMed  Google Scholar 

  • Klemmer, E. T. (1967). Sequences of responses to signals encoded in time only.Acta Psychologica,27, 197–203.

    PubMed  Google Scholar 

  • Kolers, P. A., &Brewster, J. M. (1985). Rhythms and responses.Journal of Experimental Psychology: Human Perception & Performance,11, 150–167.

    Google Scholar 

  • Kubovy, M., &Van Valkenburg, D. (2001). Auditory and visual objects.Cognition,80, 97–126.

    PubMed  Google Scholar 

  • Large, E. W. (2000). On synchronizing movements to music.Human Movement Science,19, 527–566.

    Google Scholar 

  • Large, E. W., Fink, P., &Kelso, J. A. S. (2002). Tracking simple and complex sequences.Psychological Research,66, 3–17.

    PubMed  Google Scholar 

  • Large, E. W., &Jones, M. R. (1999). The dynamics of attending: How we track time-varying events.Psychological Review,106, 119–159.

    Google Scholar 

  • Lewis, P. A., &Miall, R. C. (2003a). Brain activation patterns during measurement of sub- and supra-second intervals.Neuropsychologia,41, 1583–1592.

    PubMed  Google Scholar 

  • Lewis, P. A., &Miall, R. C. (2003b). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging.Current Opinion in Neurobiology,13, 250–255.

    PubMed  Google Scholar 

  • Lewis, P. A., Wing, A. M., Pope, P. A., Praamstra, P., &Miall, R. C. (2004). Brain activity correlates differentially with increasing temporal complexity of rhythms during initialization, synchronization, and continuation phases of paced finger tapping.Neuropsychologia,42, 1301–1312.

    PubMed  Google Scholar 

  • London, J. (2002). Cognitive constraints on metric systems: Some observations and hypotheses.Music Perception,19, 529–550.

    Google Scholar 

  • London, J. (2004).Hearing in time. New York: Oxford University Press.

    Google Scholar 

  • Luck, G. (2002). Conductors’ gestures: Perception of, and synchro nization with, visual beats [CD-ROM]. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, & J. Renwick (Eds.),Proceedings of the Seventh International Conference on Music Perception and Cognition (p. 638). Sydney: Causal Productions.

    Google Scholar 

  • Lutz, K., Specht, K., Shah, N. J., &Jäncke, L. (2000). Tapping movements according to regular and irregular visual timing signals investigated with fMRI.NeuroReport,11, 1301–1306.

    PubMed  Google Scholar 

  • Madison, G. (1999). On the nature of variability in isochronous serial interval production. In P. Desain & L. Windsor (Eds.),Rhythm perception and production (pp. 95–113). Lisse, The Netherlands: Swets & Zeitlinger.

    Google Scholar 

  • Madison, G. (2001). Variability in isochronous tapping: Higher order dependencies as a function of intertap interval.Journal of Experimental Psychology: Human Perception & Performance,27, 411–422.

    Google Scholar 

  • Madison, G. (2004). Fractal modeling of human isochronous serial interval production.Biological Cybernetics,90, 105–112.

    PubMed  Google Scholar 

  • Madison, G., &Merker, B. (2004). Human sensorimotor tracking of continuous subliminal deviations from isochrony.Neuroscience Letters,370, 69–73.

    PubMed  Google Scholar 

  • Madison, G., &Merker, B. (2005). Timing of action during and after synchronization with linearly changing intervals.Music Perception,22, 441–459.

    Google Scholar 

  • Mates, J. (1994a). A model of synchronization of motor acts to a stimulus sequence: I. Timing and error corrections.Biological Cybernetics,70, 463–473.

    PubMed  Google Scholar 

  • Mates, J. (1994b). A model of synchronization of motor acts to a stimulus sequence: II. Stability analysis, error estimation and simulations.Biological Cybernetics,70, 475–484.

    PubMed  Google Scholar 

  • Mates, J., &Aschersleben, G. (2002). Sensorimotor synchronization: The impact of temporally displaced auditory feedback.Acta Psychologica,104, 29–44.

    Google Scholar 

  • Mates, J., Radil, T., Müller, U., &Pöppel, E. (1994). Temporal integration in sensorimotor synchronization.Journal of Cognitive Neuroscience,6, 332–340.

    Google Scholar 

  • Mayville, J. M., Bressler, S. L., Fuchs, A., &Kelso, J. A. S. (1999). Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory—motor coordination.Experimental Brain Researchit,127, 371–381.

    Google Scholar 

  • Mayville, J. M., Fuchs, A., Ding, M., Cheyne, D., Deecke, L., &Kelso, J. A. S. (2001). Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks.Human Brain Mapping,14, 65–80.

    PubMed  Google Scholar 

  • Mayville, J. M., Jantzen, K. J., Fuchs, A., Steinberg, F. L., &Kelso, J. A. S. (2002). Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI.Human Brain Mapping,17, 214–229.

    PubMed  Google Scholar 

  • McAnally, K. I. (2002). Timing of finger tapping to frequency modulated acoustic stimuli.Acta Psychologica,109, 331–338.

    PubMed  Google Scholar 

  • McAuley, J. D., &Jones, M. R. (2003). Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing.Journal of Experimental Psychology: Human Perception & Performance,29, 1102–1125.

    Google Scholar 

  • Mechsner, F., Kerzel, D., Knoblich, G., &Prinz, W. (2001). Perceptual basis of bimanual coordination.Nature,414, 69–73.

    PubMed  Google Scholar 

  • Merker, B. (1999/2000). Synchronous chorusing and the origins of music.Musicæ Scientiæ (Special issue), 59–73.

  • Merker, B. (2000). Synchronous chorusing and human origins. In N. L. Wallin, B. Merker, & S. Brown (Eds.),The origins of music (pp. 315–327). Cambridge, MA: MIT Press.

    Google Scholar 

  • Miall, R. C., &Reckess, G. Z. (2002). The cerebellum and the timing of coordinated eye and hand tracking.Brain & Cognition,48, 212–226.

    Google Scholar 

  • Michon, J. A. (1967).Timing in temporal tracking. Assen, The Netherlands: van Gorcum.

    Google Scholar 

  • Michon, J. A., &van der Valk, N. J. L. (1967). A dynamic model of timing behavior.Acta Psychologica,27, 204–212.

    PubMed  Google Scholar 

  • Middleton, F. A., &Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits.Brain Research Reviews,31, 236–250.

    PubMed  Google Scholar 

  • Milner, A. D., &Goodale, M. A. (1995).The visual brain in action. Oxford: Oxford University Press.

    Google Scholar 

  • Miyake, I. (1902). Researches on rhythmic activity.Studies From the Yale Psychological Laboratory,10, 1–48.

    Google Scholar 

  • Miyake, Y., Onishi, Y., &Pöppel, E. (2004). Two types of anticipation in synchronization tapping.Acta Neurobiologiæ Experimentalis,64, 415–426.

    PubMed  Google Scholar 

  • Molinari, M., Leggio, M. G., De Martin, M., Cerasa, A., &Thaut, M. (2003). Neurobiology of rhythmic motor entrainment. In G. Avanzini, C Falenza, L. Lopez, & M. Majno (Eds.),The neurosciences and music (Annals of the New York Academy of Sciences, Vol. 999, pp. 313–321). New York: New York Academy of Sciences.

    Google Scholar 

  • Morton, J., Marcus, S. M., &Frankish, C. R. (1976). Perceptual centers (P-centers).Psychological Review,83, 405–408.

    Google Scholar 

  • Müller, K., Aschersleben, G., Koch, R., Freund, H.-J., &Prinz, W. (1999). Action timing in an isochronous tapping task: Evidence from behavioral studies and neuroimaging. In G. Aschersleben, T. Bachmann, & J. Müsseler (Eds.),Cognitive contributions to the perception of spatial and temporal events (pp. 233–250). Amsterdam: Elsevier.

    Google Scholar 

  • Müller, K., Schmitz, F., Schnitzler, A., Freund, H.-J., Aschersleben, G., &Prinz, W. (2000). Neuromagnetic correlates of sensorimotor synchronization.Journal of Cognitive Neuroscience,12, 546–555.

    PubMed  Google Scholar 

  • Norman, J. (2002). Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches.Behavioral & Brain Sciences,25, 73–144.

    Google Scholar 

  • Oshinsky, J. S., &Handel, S. (1978). Syncopated auditory polyrhythms: Discontinuous reversals in meter interpretation.Journal of the Acoustical Society of America,63, 936–939.

    Google Scholar 

  • Paillard, J. (1948). Quelques données psychophysiologiques relatives au déclenchement de la commande motrice [Some psychophysiological data relating to the triggering of motor commands].L’Année Psychologique,48, 28–47.

    Google Scholar 

  • Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms.Music Perception,11, 409–464.

    Google Scholar 

  • Patel, A. D., Iversen, J. R., Chen, Y., &Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat.Experimental Brain Research,163, 226–238.

    Google Scholar 

  • Penel, A., &Drake, C. (1998). Sources of timing variations in music performance: A psychological segmentation model.Psychological Research,61, 12–32.

    Google Scholar 

  • Penel, A., &Drake, C. (2004). Timing variations in music performance: Musical communication, perceptual compensation, and/or motor control?Perception & Psychophysics,66, 545–562.

    Google Scholar 

  • Penhune, V. B., Zatorre, R. J., &Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction.Journal of Cognitive Neuroscience,10, 752–765.

    PubMed  Google Scholar 

  • Peper, C. E., Beek, P. J., &van Wieringen, P. C. W. (1995). Coupling strength in tapping a 2:3 polyrhythm.Human Movement Science,14, 217–245.

    Google Scholar 

  • Peters, M. (1980). Why the preferred hand taps more quickly than the nonpreferred hand: Three experiments on handedness.Canadian Journal of Psychology,34, 62–71.

    Google Scholar 

  • Peters, M. (1985). Constraints in the performance of bimanual tasks and their expression in unskilled and skilled subjects.Quarterly Journal of Experimental Psychology,37A, 171–196.

    Google Scholar 

  • Peters, M. (1989). The relationship between variability of intertap intervals and interval duration.Psychological Research,51, 38–42.

    Google Scholar 

  • Pikovsky, A., Rosenblum, M., &Kurths, J. (2001).Synchronization: A universal concept in nonlinear sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pollok, B., Gross, J., Müller, K., Aschersleben, G., &Schnitzler, A. (2005). The cerebral oscillatory network associated with auditorily paced finger movements.NeuroImage,24, 646–655.

    PubMed  Google Scholar 

  • Pollok, B., Müller, K., Aschersleben, G., Schmitz, F., Schnitzler, A., &Prinz, W. (2003). Cortical activations associated with auditorily paced finger tapping.NeuroReport,14, 247–250.

    PubMed  Google Scholar 

  • Pollok, B., Müller, K., Aschersleben, G., Schmitz, F., Schnitzler, A., &Prinz, W. (2004). The role of the primary somatosensory cortex in an auditorily paced finger tapping task.Experimental Brain Research,156, 111–117.

    Google Scholar 

  • Pöppel, E. (1997). A hierarchical model of temporal perception.Trends in Cognitive Sciences,1, 56–61.

    PubMed  Google Scholar 

  • Povel, D.-J., &Essens, P. (1985). Perception of temporal patterns.Music Perception,2, 411–440.

    Google Scholar 

  • Povel, D.-J., &Okkerman, H. (1981). Accents in equitone sequences.Perception & Psychophysics,30, 565–572.

    Google Scholar 

  • Praamstra, P., Turgeon, M., Hesse, C. W., Wing, A. M., &Perryer, L. (2003). Neurophysiological correlates of error correction in sensorimotor synchronization.NeuroImage,20, 1283–1297.

    PubMed  Google Scholar 

  • Pressing, J. (1998a). Error correction processes in temporal pattern production.Journal of Mathematical Psychology,42, 63–101.

    PubMed  Google Scholar 

  • Pressing, J. (1998b). Referential behavior theory: A framework for multiple perspectives on motor control. In J. P. Piek (Ed.),Motor behavior and human skill: A multidisciplinary approach (pp. 357–384). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Pressing, J. (1999). The referential dynamics of cognition and action.Psychological Review,106, 714–747.

    Google Scholar 

  • Pressing, J., &Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill.Biological Cybernetics,76, 339–347.

    PubMed  Google Scholar 

  • Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W., &Binder, J. R. (1997). Distributed neural systems underlying the timing of movements.Journal of Neuroscience,17, 5526–5535.

    Google Scholar 

  • Rasch, R. A. (1979). Synchronization in performed ensemble music.Acustica,43, 121–131.

    Google Scholar 

  • Repp, B. H. (1992). Diversity and commonality in music performance: An analysis of timing microstructure in Schumann’s “Träumerei.”Journal of the Acoustical Society of America,92, 2546–2568.

    PubMed  Google Scholar 

  • Repp, B. H. (1999a). Control of expressive and metronomic timing in pianists.Journal of Motor Behavior,31, 145–164.

    PubMed  Google Scholar 

  • Repp, B. H. (1999b). Detecting deviations from metronomic timing in music: Effects of perceptual structure on the mental timekeeper.Perception & Psychophysics,61, 529–548.

    Google Scholar 

  • Repp, B. H. (1999c). Relationships between performance timing, perception of timing perturbations, and perceptual—motor synchronization in two Chopin preludes.Australian Journal of Psychology,51, 188–203.

    Google Scholar 

  • Repp, B. H. (2000a). Compensation for subliminal timing perturbations in perceptual—motor synchronization.Psychological Research,63, 106–128.

    PubMed  Google Scholar 

  • Repp, B. H. (2000b). Subliminal temporal discrimination revealed in sensorimotor coordination. In P. Desain & L. Windsor (Eds.),Rhythm perception and production (pp. 129–142). Lisse, The Netherlands: Swets & Zeitlinger.

    Google Scholar 

  • Repp, B. H. (2001a). Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization.Journal of Experimental Psychology: Human Perception & Performance,27, 600–621.

    Google Scholar 

  • Repp, B. H. (2001b). Processes underlying adaptation to tempo changes in sensorimotor synchronization.Human Movement Science,20, 277–312.

    PubMed  Google Scholar 

  • Repp, B. H. (2002a). Automaticity and voluntary control of phase correction following event onset shifts in sensorimotor synchronization.Journal of Experimental Psychology: Human Perception & Performance,28, 410–430.

    Google Scholar 

  • Repp, B. H. (2002b). Effects of metrical structure on phase resetting in sensorimotor synchronization [CD-ROM]. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, & J. Renwick (Eds.),Proceedings of the Seventh International Conference on Music Perception and Cognition (pp. 572–574). Sydney: Causal Productions.

    Google Scholar 

  • Repp, B. H. (2002c). The embodiment of musical structure: Effects of musical context on sensorimotor synchronization with complex timing patterns. In W. Prinz & B. Hommel (Eds.),Common mechanisms in perception and action: Attention and performance XIX (pp. 245–265). Oxford: Oxford University Press.

    Google Scholar 

  • Repp, B. H. (2002d). Perception of timing is more context sensitive than sensorimotor synchronization.Perception & Psychophysics,64, 703–716.

    Google Scholar 

  • Repp, B. H. (2002e). Phase correction following a perturbation in sensorimotor synchronization depends on sensory information.Journal of Motor Behavior,34, 291–298.

    PubMed  Google Scholar 

  • Repp, B. H. (2002f). Phase correction in sensorimotor synchronization: Nonlinearities in voluntary and involuntary responses to perturbations.Human Movement Science,21, 1–37.

    PubMed  Google Scholar 

  • Repp, B. H. (2003a). Phase attraction in sensorimotor synchronization with auditory sequences: Effects of single and periodic distractors on synchronization accuracy.Journal of Experimental Psychology: Human Perception & Performance,29, 290–309.

    Google Scholar 

  • Miyake, Y., Onishi, Y., &Pöppel, E. (2004). Two types of anticipation in synchronization tapping.Acta Neurobiologiæ Experimentalis,64, 415–426.

    PubMed  Google Scholar 

  • Molinari, M., Leggio, M. G., De Martin, M., Cerasa, A., &Thaut, M. (2003). Neurobiology of rhythmic motor entrainment. In G. Avanzini, C Falenza, L. Lopez, & M. Majno (Eds.),The neurosciences and music (Annals of the New York Academy of Sciences, Vol. 999, pp. 313–321). New York: New York Academy of Sciences.

    Google Scholar 

  • Morton, J., Marcus, S. M., &Frankish, C. R. (1976). Perceptual centers (P-centers).Psychological Review,83, 405–408.

    Google Scholar 

  • Müller, K., Aschersleben, G., Koch, R., Freund, H.-J., &Prinz, W. (1999). Action timing in an isochronous tapping task: Evidence from behavioral studies and neuroimaging. In G. Aschersleben, T. Bachmann, & J. Müsseler (Eds.),Cognitive contributions to the perception of spatial and temporal events (pp. 233–250). Amsterdam: Elsevier.

    Google Scholar 

  • Müller, K., Schmitz, F., Schnitzler, A., Freund, H.-J., Aschersleben, G., &Prinz, W. (2000). Neuromagnetic correlates of sensorimotor synchronization.Journal of Cognitive Neuroscience,12, 546–555.

    PubMed  Google Scholar 

  • Norman, J. (2002). Two visual systems and two theories of perception: An attempt to reconcile the constructivist and ecological approaches.Behavioral & Brain Sciences,25, 73–144.

    Google Scholar 

  • Oshinsky, J. S., &Handel, S. (1978). Syncopated auditory polyrhythms: Discontinuous reversals in meter interpretation.Journal of the Acoustical Society of America,63, 936–939.

    Google Scholar 

  • Paillard, J. (1948). Quelques données psychophysiologiques relatives au déclenchement de la commande motrice [Some psychophysiological data relating to the triggering of motor commands].L’Année Psychologique,48, 28–47.

    Google Scholar 

  • Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms.Music Perception,11, 409–464.

    Google Scholar 

  • Patel, A. D., Iversen, J. R., Chen, Y., &Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat.Experimental Brain Research,163, 226–238.

    Google Scholar 

  • Penel, A., &Drake, C. (1998). Sources of timing variations in music performance: A psychological segmentation model.Psychological Research,61, 12–32.

    Google Scholar 

  • Penel, A., &Drake, C. (2004). Timing variations in music performance: Musical communication, perceptual compensation, and/or motor control?Perception & Psychophysics,66, 545–562.

    Google Scholar 

  • Penhune, V. B., Zatorre, R. J., &Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction.Journal of Cognitive Neuroscience,10, 752–765.

    PubMed  Google Scholar 

  • Peper, C. E., Beek, P. J., &van Wieringen, P. C. W. (1995). Coupling strength in tapping a 2:3 polyrhythm.Human Movement Science,14, 217–245.

    Google Scholar 

  • Peters, M. (1980). Why the preferred hand taps more quickly than the nonpreferred hand: Three experiments on handedness.Canadian Journal of Psychology,34, 62–71.

    Google Scholar 

  • Peters, M. (1985). Constraints in the performance of bimanual tasks and their expression in unskilled and skilled subjects.Quarterly Journal of Experimental Psychology,37A, 171–196.

    Google Scholar 

  • Peters, M. (1989). The relationship between variability of intertap intervals and interval duration.Psychological Research,51, 38–42.

    Google Scholar 

  • Pikovsky, A., Rosenblum, M., &Kurths, J. (2001).Synchronization: A universal concept in nonlinear sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pollok, B., Gross, J., Müller, K., Aschersleben, G., &Schnitzler, A. (2005). The cerebral oscillatory network associated with auditorily paced finger movements.NeuroImage,24, 646–655.

    PubMed  Google Scholar 

  • Pollok, B., Müller, K., Aschersleben, G., Schmitz, F., Schnitzler, A., &Prinz, W. (2003). Cortical activations associated with auditorily paced finger tapping.NeuroReport,14, 247–250.

    PubMed  Google Scholar 

  • Pollok, B., Müller, K., Aschersleben, G., Schmitz, F., Schnitzler, A., &Prinz, W. (2004). The role of the primary somatosensory cortex in an auditorily paced finger tapping task.Experimental Brain Research,156, 111–117.

    Google Scholar 

  • Pöppel, E. (1997). A hierarchical model of temporal perception.Trends in Cognitive Sciences,1, 56–61.

    PubMed  Google Scholar 

  • Povel, D.-J., &Essens, P. (1985). Perception of temporal patterns.Music Perception,2, 411–440.

    Google Scholar 

  • Povel, D.-J., &Okkerman, H. (1981). Accents in equitone sequences.Perception & Psychophysics,30, 565–572.

    Google Scholar 

  • Praamstra, P., Turgeon, M., Hesse, C. W., Wing, A. M., &Perryer, L. (2003). Neurophysiological correlates of error correction in sensorimotor synchronization.NeuroImage,20, 1283–1297.

    PubMed  Google Scholar 

  • Pressing, J. (1998a). Error correction processes in temporal pattern production.Journal of Mathematical Psychology,42, 63–101.

    PubMed  Google Scholar 

  • Pressing, J. (1998b). Referential behavior theory: A framework for multiple perspectives on motor control. In J. P. Piek (Ed.),Motor behavior and human skill: A multidisciplinary approach (pp. 357–384). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Pressing, J. (1999). The referential dynamics of cognition and action.Psychological Review,106, 714–747.

    Google Scholar 

  • Pressing, J., &Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill.Biological Cybernetics,76, 339–347.

    PubMed  Google Scholar 

  • Rao, S. M., Harrington, D. L., Haaland, K. Y., Bobholz, J. A., Cox, R. W., &Binder, J. R. (1997). Distributed neural systems underlying the timing of movements.Journal of Neuroscience,17, 5526–5535.

    Google Scholar 

  • Rasch, R. A. (1979). Synchronization in performed ensemble music.Acustica,43, 121–131.

    Google Scholar 

  • Repp, B. H. (1992). Diversity and commonality in music performance: An analysis of timing microstructure in Schumann’s “Träumerei.”Journal of the Acoustical Society of America,92, 2546–2568.

    PubMed  Google Scholar 

  • Repp, B. H. (1999a). Control of expressive and metronomic timing in pianists.Journal of Motor Behavior,31, 145–164.

    PubMed  Google Scholar 

  • Repp, B. H. (1999b). Detecting deviations from metronomic timing in music: Effects of perceptual structure on the mental timekeeper.Perception & Psychophysics,61, 529–548.

    Google Scholar 

  • Repp, B. H. (1999c). Relationships between performance timing, perception of timing perturbations, and perceptual—motor synchronization in two Chopin preludes.Australian Journal of Psychology,51, 188–203.

    Google Scholar 

  • Repp, B. H. (2000a). Compensation for subliminal timing perturbations in perceptual—motor synchronization.Psychological Research,63, 106–128.

    PubMed  Google Scholar 

  • Repp, B. H. (2000b). Subliminal temporal discrimination revealed in sensorimotor coordination. In P. Desain & L. Windsor (Eds.),Rhythm perception and production (pp. 129–142). Lisse, The Netherlands: Swets & Zeitlinger.

    Google Scholar 

  • Repp, B. H. (2001a). Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization.Journal of Experimental Psychology: Human Perception & Performance,27, 600–621.

    Google Scholar 

  • Repp, B. H. (2001b). Processes underlying adaptation to tempo changes in sensorimotor synchronization.Human Movement Science,20, 277–312.

    PubMed  Google Scholar 

  • Repp, B. H. (2002a). Automaticity and voluntary control of phase correction following event onset shifts in sensorimotor synchronization.Journal of Experimental Psychology: Human Perception & Performance,28, 410–430.

    Google Scholar 

  • Repp, B. H. (2002b). Effects of metrical structure on phase resetting in sensorimotor synchronization [CD-ROM]. In C. Stevens, D. Burnham, G. McPherson, E. Schubert, & J. Renwick (Eds.),Proceedings of the Seventh International Conference on Music Perception and Cognition (pp. 572–574). Sydney: Causal Productions.

    Google Scholar 

  • Repp, B. H. (2002c). The embodiment of musical structure: Effects of musical context on sensorimotor synchronization with complex timing patterns. In W. Prinz & B. Hommel (Eds.),Common mechanisms in perception and action: Attention and performance XIX(pp. 245–265). Oxford: Oxford University Press.

    Google Scholar 

  • Repp, B. H. (2002d). Perception of timing is more context sensitive than sensorimotor synchronization.Perception & Psychophysics,64, 703–716.

    Google Scholar 

  • Repp, B. H. (2002e). Phase correction following a perturbation in sensorimotor synchronization depends on sensory information.Journal of Motor Behavior,34, 291–298.

    PubMed  Google Scholar 

  • Repp, B. H. (2002f). Phase correction in sensorimotor synchronization: Nonlinearities in voluntary and involuntary responses to perturbations.Human Movement Science,21, 1–37.

    PubMed  Google Scholar 

  • Repp, B. H. (2003a). Phase attraction in sensorimotor synchronization with auditory sequences: Effects of single and periodic distractors on synchronization accuracy.Journal of Experimental Psychology: Human Perception & Performance,29, 290–309.

    Google Scholar 

  • Repp, B. H. (2003b). Rate limits in sensorimotor synchronization with auditory and visual sequences: The synchronization threshold and the benefits and costs of interval subdivision.Journal of Motor Behavior,35, 355–370.

    PubMed  Google Scholar 

  • Repp, B. H. (2004a). Comments on “Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization” by Michael H. Thaut and Gary P. Kenyon (Human Movement Science,22 [2003], 321-338).Human Movement Science,23, 61–77.

    PubMed  Google Scholar 

  • Repp, B. H. (2004b). On the nature of phase attraction in sensorimotor synchronization with interleaved auditory sequences.Human Movement Science,23, 389–413.

    PubMed  Google Scholar 

  • Repp, B. H. (2004c).The role of metrical structure in sensorimotor synchronization with simple auditory sequences. Manuscript submitted for publication.

  • Repp, B. H. (2005a).Counting auditory events at rapid rates: Emergence of metrical structure from automatic subdivision of repeated counts. Manuscript submitted for publication.

  • Repp, B. H. (2005b).Hearing a melody in different ways: Multistability of metrical interpretation, reflected in rate limits of sensorimotor synchronization. Manuscript submitted for publication.

  • Repp, B. H. (2005c). Rate limits of on-beat and off-beat tapping with simple auditory rhythms: 1. Qualitative observations.Music Perception,22, 479–496.

    Google Scholar 

  • Repp, B. H. (2005d). Rate limits of on-beat and off-beat tapping with simple auditory rhythms: 2. The roles of different kinds of accent.Music Perception,23, 165–187.

    Google Scholar 

  • Repp, B. H. (2006a). Does an auditory distractor sequence affect selfpaced tapping?Acta Psychologica,121, 81–107.

    PubMed  Google Scholar 

  • Repp, B. H. (2006b). Does an auditory perceptual illusion affect on-line auditory action control? The case of (de)accentuation and synchronization.Experimental Brain Research,168, 493–504.

    Google Scholar 

  • Repp, B. H. (in press). Musical synchronization. In E. Altenmüller, M. Wiesendanger, & J. Kesselring (Eds.),Music, motor control, and the brain. Oxford: Oxford University Press.

  • Repp, B. H., &Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness.Quarterly Journal of Experimental Psychology,57A, 499–521.

    Google Scholar 

  • Repp, B. H., London, J., &Keller, P. E. (2005). Production and synchronization of uneven rhythms at fast tempi.Music Perception,23, 61–78.

    Google Scholar 

  • Repp, B. H., &Penel, A. (2002). Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences.Journal of Experimental Psychology: Human Perception & Performance,28, 1085–1099.

    Google Scholar 

  • Repp, B. H., &Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms.Psychological Research,68, 252–270.

    PubMed  Google Scholar 

  • Richardson, M. J., Marsh, K. L., &Schmidt, R. C. (2005). Effects of visual and verbal interaction on unintentional interpersonal coordination.Journal of Experimental Psychology: Human Perception & Performance,31, 62–79.

    Google Scholar 

  • Roberts, S., Eykholt, R., &Thaut, M. H. (2000). Analysis of correlations and search for evidence of deterministic chaos in rhythmic motor control by the human brain.Physical Review E,62, 2597–2607.

    Google Scholar 

  • Schmidt, R. C., &O’Brien, B. (1997). Evaluating the dynamics of unintended interpersonal coordination.Ecological Psychology,9, 189–206.

    Google Scholar 

  • Schögler, B. (1999/2000). Studying temporal co-ordination in jazz duets.Musicæ Scientiæ (Special issue), 75–91.

  • Schulze, H.-H. (1992). The error correction model for the tracking of a random metronome: Statistical properties and an empirical test. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.),Time, action, and cognition: Towards bridging the gap (pp. 275–286). Dordrecht: Kluwer.

    Google Scholar 

  • Schulze, H.-H., Cordes, A., &Vorberg, D. (2005). Keeping synchrony while tempo changes: Accelerando and ritardando.Music Perception,22, 461–477.

    Google Scholar 

  • Schulze, H.-H., &Vorberg, D. (2002). Linear phase correction models for synchronization: Parameter identification and estimation of parameters.Brain & Cognition,48, 80–97.

    Google Scholar 

  • Semjen, A. (2000). Tapping off the beat: A note on the role of preparation in stabilising anti-phase sensory—motor coordination.Cognitive Processing,1, 89–98.

    Google Scholar 

  • Semjen, A., &Ivry, R. B. (2001). The coupled oscillator model of between-hand coordination in alternate-hand tapping: A reappraisal.Journal of Experimental Psychology: Human Perception & Performance,27, 251–265.

    Google Scholar 

  • Semjen, A., Schulze, H.-H., &Vorberg, D. (1992). Temporal control in the coordination between repetitive tapping and periodic external stimuli. In C. Auxiette, C. Drake, & C. Gérard (Eds.),Proceedings of the Fourth Rhythm Workshop: Rhythm perception and production (pp. 73–78). Bourges, France: Imprimerie Municipale.

    Google Scholar 

  • Semjen, A., Schulze, H.-H., &Vorberg, D. (2000). Timing precision in continuation and synchronization tapping.Psychological Research,63, 137–147.

    PubMed  Google Scholar 

  • Semjen, A., Vorberg, D., &Schulze, H.-H. (1998). Getting synchronized with the metronome: Comparisons between phase and period correction.Psychological Research,61, 44–55.

    Google Scholar 

  • Semjen, A., &Vos, P. G. (2002). The impact of metrical structure on performance stability in bimanual 1:3 tapping.Psychological Research,66, 50–59.

    PubMed  Google Scholar 

  • Shaffer, L. H. (1984). Timing in solo and duet piano performances.Quarterly Journal of Experimental Psychology,36A, 577–595.

    Google Scholar 

  • Sismondo, E. (1990). Synchronous, alternating, and phase-locked stridulation by a tropical katydid.Science,249, 55–58.

    PubMed  Google Scholar 

  • Smethurst, C. J., &Carson, R. G. (2003). The effect of volition on the stability of bimanual coordination.Journal of Motor Behavior,35, 309–319.

    PubMed  Google Scholar 

  • Snyder, J., &Krumhansl, C. L. (2001). Tapping to ragtime: Cues to pulse finding.Music Perception,18, 455–489.

    Google Scholar 

  • Spencer, R. M. C., Ivry, R. B., &Zelaznik, H. N. (2005). Role of the cerebellum in movements: Control of timing or movement transitions?Experimental Brain Research,161, 383–396.

    Google Scholar 

  • Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J., &Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions.Science,300, 1437–1439.

    PubMed  Google Scholar 

  • Stephan, K. M., Thaut, M. H., Wunderlich, G., Schicks, W., Tian, B., Tellmann, L., et al. (2002). Conscious and subconscious sensorimotor synchronization: Prefrontal cortex and the influence of awareness.NeuroImage,15, 345–352.

    PubMed  Google Scholar 

  • Stevens, L. T. (1886). On the time-sense.Mind,11, 393–404.

    Google Scholar 

  • Sundberg, J., &Verrillo, V. (1980). On the anatomy of the retard: A study of timing in music.Journal of the Acoustical Society of America,68, 772–779.

    Google Scholar 

  • Szelag, E., von Steinbüchel, N., Reiser, M., de Langen, E. G., &Pöppel, E. (1996). Temporal constraints in processing of nonverbal rhythmic patterns.Acta Neurobiologiæ Experimentalis,56, 215–225.

    PubMed  Google Scholar 

  • Tesche, C. D., &Karhu, J. J. T. (2000). Anticipatory cerebellar responses during somatosensory omission in man.Human Brain Mapping,9, 119–142.

    PubMed  Google Scholar 

  • Thackray, R. M. (1969).An investigation into rhythmic abilities. London: Novello.

    Google Scholar 

  • Thaut, M. H., &Kenyon, G. P. (2003). Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization.Human Movement Science,22, 321–338.

    PubMed  Google Scholar 

  • Thaut, M. H., &Kenyon, G. P. (2004). Response to Bruno Repp’s “Comments on ‘Rapid motor adaptations to subliminal frequency shifts during syncopated rhythmic sensorimotor synchronization’ by Michael H. Thaut and Gary P. Kenyon (Human Movement Science,22 [2003], 321-338).”Human Movement Science,23, 79–86.

    Google Scholar 

  • Thaut, M. H., Kenyon, G. P., Schauer, M. L., &McIntosh, G. C. (1999). The connection between rhythmicity and brain function.IEEE Engineering in Medicine & Biology,18, 101–108.

    Google Scholar 

  • Thaut, M. H., Miller, R. A., &Schauer, L. M. (1998). Multiple synchronization strategies in rhythmic sensorimotor tasks: Phase vs. period correction.Biological Cybernetics,79, 241–250.

    PubMed  Google Scholar 

  • Thaut, M. H., Rathbun, J. A., &Miller, R. A. (1997). Music versus metronome timekeeper in a rhythmic motor task.International Journal of Arts Medicine,5, 4–12.

    Google Scholar 

  • Thaut, M. H., Tian, B., &Azimi-Sadjadi, M. R. (1998). Rhythmic finger tapping to cosine-wave modulated metronome sequences: Evidence of subliminal entrainment.Human Movement Science,17, 839–863.

    Google Scholar 

  • Todd, N. P. M. (1992). The dynamics of dynamics: A model of musical expression.Journal of the Acoustical Society of America,91, 3540–3550.

    Google Scholar 

  • Todor, J. I., &Kyprie, P. M. (1980). Hand differences in the rate and variability of rapid tapping.Journal of Motor Behavior,12, 57–62.

    PubMed  Google Scholar 

  • Toiviainen, P., &Snyder, J. S. (2003). Tapping to Bach: Resonancebased modeling of pulse.Music Perception,21, 43–80.

    Google Scholar 

  • Truman, G., &Hammond, G. R. (1990). Temporal regularity of tapping by the left and right hands in timed and untimed finger tapping.Journal of Motor Behavior,22, 521–535.

    PubMed  Google Scholar 

  • Van Noorden, L., &Moelants, D. (1999). Resonance in the perception of musical pulse.Journal of New Music Research,28, 43–66.

    Google Scholar 

  • Vaughan, J., Mattson, T. R., &Rosenbaum, D. A. (1998). The regulation of contact in rhythmic tapping. In D. A. Rosenbaum & C. E. Collyer (Eds.),Timing of behavior: Neural, psychological, and computational perspectives (pp. 195–211). Cambridge, MA: MIT Press.

    Google Scholar 

  • Vaughan, J., Rosenbaum, D. A., Diedrich, F. J., &Moore, C. M. (1996). Cooperative selection of movements: The optimal selection model.Psychological Research,58, 254–273.

    PubMed  Google Scholar 

  • Voillaume, C. (1971). Modèles pour l’étude de la régulation des mouvements cadencés [Models for studying the regulation of repetitive movements].L’Année Psychologique,71, 347–358.

    PubMed  Google Scholar 

  • Volman, M. J. M., &Geuze, R. H. (2000). Temporal stability of rhythmic tapping “on” and “off the beat”: A developmental study.Psychological Research,63, 62–69.

    PubMed  Google Scholar 

  • Vorberg, D., &Schulze, H.-H. (2002). A two-level timing model for synchronization.Journal of Mathematical Psychology,46, 56–87.

    Google Scholar 

  • Vorberg, D., &Wing, A. (1996). Modeling variability and dependence in timing. In H. Heuer & S. W. Keele (Eds.),Handbook of perception and action (Vol. 2, pp. 181–262). London: Academic Press.

    Google Scholar 

  • Vos, P. G., &Helsper, E. L. (1992). Tracking simple rhythms: On-beat versus off-beat performance. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.),Time, action, and cognition: Towards bridging the gap (pp. 287–299). Dordrecht: Kluwer.

    Google Scholar 

  • Vos, P. G., Mates, J., &van Kruysbergen, N. W. (1995). The perceptual center of a stimulus as the cue for synchronization to a metronome: Evidence from asynchronies.Quarterly Journal of Experimental Psychology,48A, 1024–1040.

    Google Scholar 

  • Vos, P. G., van Dijk, A., &Schomaker, L. (1994). Melodic cues for metre.Perception,23, 965–976.

    PubMed  Google Scholar 

  • Wagenmakers, E.-J., Farrell, S., &Ratcliff, R. (2004). Estimation and interpretation of 1/fα noise in human cognition.Psychonomic Bulletin & Review,11, 579–615.

    Google Scholar 

  • Wimmers, R. H., Beek, P. J., &van Wieringen, P. C. W. (1992). Phase transitions in rhythmic tracking movements: A case of unilateral coupling.Human Movement Science,11, 217–226.

    Google Scholar 

  • Wing, A. M. (1977). Perturbations of auditory feedback delay and the timing of movement.Journal of Experimental Psychology: Human Perception & Performance,3, 175–186.

    Google Scholar 

  • Wing, A. M. (1980). The long and short of timing in response sequences. In G. E. Stelmach & J. Requin (Eds.),Tutorials in motor behavior (pp. 469–486). Amsterdam: North-Holland.

    Google Scholar 

  • Wing, A. M. (2002). Voluntary timing and brain function: An information processing approach.Brain & Cognition,48, 7–30.

    Google Scholar 

  • Wing, A. M., Daffertshofer, A., &Pressing, J. (2004). Multiple time scales in serial production of force: A tutorial on power spectral analysis of motor variability.Human Movement Science,23, 569–590.

    PubMed  Google Scholar 

  • Wing, A. M., &Kristofferson, A. B. (1973a). Response delays and the timing of discrete motor responses.Perception & Psychophysics,14, 5–12.

    Google Scholar 

  • Wing, A. M., &Kristofferson, A. B. (1973b). The timing of interresponse intervals.Perception & Psychophysics,13, 455–460.

    Google Scholar 

  • Wittmann, M., & öppel, E. (1999/2000). Temporal mechanisms of the brain as fundamentals of communication—with special reference to music perception and performance.Musicæ Scientiæ (Special issue), 13–28.

  • Wohlschläger, A., &Koch, R. (2000). Synchronization error: An error in time perception. In P. Desain & L. Windsor (Eds.),Rhythm perception and production (pp. 115–127). Lisse, The Netherlands: Swets & Zeitlinger.

    Google Scholar 

  • Wolpert, D. M., Miall, R. C., &Kawato, M. (1998). Internal models in the cerebellum.Trends in Cognitive Sciences,2, 338–347.

    PubMed  Google Scholar 

  • Woodrow, H. (1932). The effect of rate of sequence upon the accuracy of synchronization.Journal of Experimental Psychology,15, 357–379.

    Google Scholar 

  • Yabe, H., Tervaniemi, M., Reinikainen, K., &Näätänen, R. (1997). Temporal window of integration revealed by MMN to sound omission.NeuroReport,8, 1971–1974.

    PubMed  Google Scholar 

  • Yabe, H., Tervaniemi, M., Sinkkonen, J., Huotilainen, M., Ilmoniemi, R. J., &Näätänen, R. (1998). Temporal window of integration of auditory information in the human brain.Psychophysiology,35, 615–619.

    PubMed  Google Scholar 

  • Yamada, M. (1996). Temporal control mechanism in equaled interval tapping.Applied Human Science,15, 105–110.

    PubMed  Google Scholar 

  • Yamada, M., &Yonera, S. (2001). Temporal control mechanism of repetitive tapping with simple rhythmic patterns.Acoustical Science & Technology,22, 245–252.

    Google Scholar 

  • Yamada, N. (1995). Nature of variability in rhythmical movement.Human Movement Science,14, 371–384.

    Google Scholar 

  • Yamanishi, J., Kawato, M., &Suzuki, R. (1980). Two coupled oscillators as a model for the coordinated finger tapping by both hands.Biological Cybernetics,37, 219–225.

    PubMed  Google Scholar 

  • Yu, H., Russell, D. M., &Sternad, D. (2003). Task—effector asymmetries in a rhythmic continuation task.Journal of Experimental Psychology: Human Perception & Performance,29, 616–630.

    Google Scholar 

  • Zelaznik, H. N., Spencer, R. M. C., &Ivry, R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements.Journal of Experimental Psychology: Human Perception & Performance,28, 575–588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review is dedicated to the memory of Andras Semjen, an excellent researcher and a gentle and modest man, who passed away in early 2004, just as I began work on the manuscript. Support from NIH Grants HD-01994 (Carol Fowler, P.I.) and DC-03663 (Elliot Saltzman, P.I.) during preparation of the manuscript is gratefully acknowledged. My research was supported by NIH Grant MH-51230. Peter Keller, Edward Large, Guy Madison, Dagmar Sternad, Dirk Vorberg, and Alan Wing provided helpful comments on earlier versions of the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Repp, B.H. Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin & Review 12, 969–992 (2005). https://doi.org/10.3758/BF03206433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BF03206433

Keywords

  • Phase Correction
  • Experimental Brain Research
  • Music Perception
  • Target Tone
  • Auditory Sequence