Skip to main content

Reconsidering “evidence” for fast-and-frugal heuristics

Abstract

In several recent reviews, authors have argued for the pervasive use of fast-and-frugal heuristics in human judgment. They have provided an overview of heuristics and have reiterated findings corroborating that such heuristics can be very valid strategies leading to high accuracy. They also have reviewed previous work that implies that simple heuristics are actually used by decision makers. Unfortunately, concerning the latter point, these reviews appear to be somewhat incomplete. More important, previous conclusions have been derived from investigations that bear some noteworthy methodological limitations. I demonstrate these by proposing a new heuristic and provide some novel critical findings. Also, I review some of the relevant literature often not—or only partially—considered. Overall, although some fast-and-frugal heuristics indeed seem to predict behavior at times, there is little to no evidence for others. More generally, the empirical evidence available does not warrant the conclusion that heuristics are pervasively used.

References

  • Ayal, S., & Hochman, G. (2009). Ignorance or integration: The cognitive processes underlying choice behavior. Journal of Behavioral Decision Making, 22, 455–474.

    Article  Google Scholar 

  • Birnbaum, M. H. (2008a). Evaluation of the priority heuristic as a descriptive model of risky decision making: Comment on Brandstätter, Gigerenzer, and Hertwig (2006). Psychological Review, 115, 253–260.

    PubMed  Article  Google Scholar 

  • Birnbaum, M. H. (2008b). New tests of cumulative prospect theory and the priority heuristic: Probability-outcome tradeoff with branch splitting. Judgment & Decision Making, 3, 304–316.

    Google Scholar 

  • Birnbaum, M. H., & LaCroix, A. R. (2008). Dimension integration: Testing models without trade-offs. Organizational Behavior & Human Decision Processes, 105, 122–133.

    Article  Google Scholar 

  • Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). Making choices without trade-offs: The priority heuristic. Psychological Review, 113, 409–432.

    PubMed  Article  Google Scholar 

  • Bröder, A. (2000). Assessing the empirical validity of the “take-the-best” heuristic as a model of human probabilistic inference. Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 1332–1346.

    Article  Google Scholar 

  • Bröder, A., & Eichler, A. (2006). The use of recognition information and additional cues in inferences from memory. Acta Psychologica, 121, 275–284.

    PubMed  Article  Google Scholar 

  • Bröder, A., & Gaissmaier, W. (2007). Sequential processing of cues in memory-based multiattribute decisions. Psychonomic Bulletin & Review, 14, 895–900.

    Article  Google Scholar 

  • Bröder, A., & Newell, B. R. (2008). Challenging some common beliefs: Empirical work within the adaptive toolbox metaphor. Judgment & Decision Making, 3, 205–214.

    Google Scholar 

  • Busemeyer, J. R., & Johnson, J. G. (2004). Computational models of decision making. In D. J. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (pp. 133–154). Malden, MA: Blackwell.

    Chapter  Google Scholar 

  • Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432–459.

    PubMed  Article  Google Scholar 

  • Dougherty, M. R., Franco-Watkins, A. M., & Thomas, R. (2008). Psychological plausibility of the theory of probabilistic mental models and the fast and frugal heuristics. Psychological Review, 115, 199–213.

    PubMed  Article  Google Scholar 

  • Dougherty, M. R., Gettys, C. F., & Odgen, E. E. (1999). MINERVA-DM: A memory process model for judgments of likelihood. Psychological Review, 106, 180–209.

    Article  Google Scholar 

  • Erdfelder, E., Auer, T.-S., Hilbig, B. E., Assfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. Zeitschrift für Psychologie, 217, 108–124.

    Article  Google Scholar 

  • Erdfelder, E., Küpper-Tetzel, C. E., & Mattern, S. (in press). Threshold models of recognition and the recognition heuristic. Judgment & Decision Making.

  • Fiedler, K. (2010). How to study cognitive decision algorithms: The case of the priority heuristic. Judgment & Decision Making, 5, 21–32.

    Google Scholar 

  • Frosch, C. A., McCloy, R., Beaman, C. P., & Goddard, K. (2010). Time to decide: Frugality vs. congruity in comparative judgment. Manuscript submitted for publication.

  • Gigerenzer, G. (2008). Why heuristics work. Perspectives on Psychological Science, 3, 20–29.

    Article  Google Scholar 

  • Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1, 107–143.

    Article  Google Scholar 

  • Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650–669.

    PubMed  Article  Google Scholar 

  • Gigerenzer, G., Hoffrage, U., & Goldstein, D. G. (2008). Fast and frugal heuristics are plausible models of cognition: Reply to Dougherty, Franco-Watkins, and Thomas (2008). Psychological Review, 115, 230–237.

    PubMed  Article  Google Scholar 

  • Glöckner, A. (2008). How evolution outwits bounded rationality: The efficient interaction of automatic and deliberate processes in decision making and implications for institutions. In C. Engel & W. Singer (Eds.), Better than conscious? Implications for performance and institutional analysis (pp. 259–284). Cambridge, MA: MIT Press.

    Google Scholar 

  • Glöckner, A. (2009). Investigating intuitive and deliberate processes statistically: The multiple-measure maximum likelihood strategy classification method. Judgment & Decision Making, 4, 186–199.

    Google Scholar 

  • Glöckner, A., & Betsch, T. (2008a). Do people make decisions under risk based on ignorance? An empirical test of the priority heuristic against cumulative prospect theory. Organizational Behavior & Human Decision Processes, 107, 75–95.

    Article  Google Scholar 

  • Glöckner, A., & Betsch, T. (2008b). Modeling option and strategy choices with connectionist networks: Towards an integrative model of automatic and deliberate decision making. Judgment & Decision Making, 3, 215–228.

    Google Scholar 

  • Glöckner, A., & Betsch, T. (2008c). Multiple-reason decision making based on automatic processing. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 1055–1075.

    Article  Google Scholar 

  • Glöckner, A., & Betsch, T. (2010). Accounting for critical evidence while being precise and avoiding the strategy selection problem in a parallel constraint satisfaction approach: A reply to Marewski (2010). Journal of Behavioral Decision Making, 23, 468–472.

    Article  Google Scholar 

  • Glöckner, A., Betsch, T., & Schindler, N. (2010). Coherence shifts in probabilistic inference tasks. Journal of Behavioral Decision Making, 23, 439–462.

    Article  Google Scholar 

  • Glöckner, A., & Bröder, A. (in press). Processing of recognition information and additional cues: A model-based analysis of choice, confidence, and response time. Judgment & Decision Making.

  • Glöckner, A., & Herbold, A.-K. (in press). An eye-tracking study on information processing in risky decisions: Evidence for compensatory strategies based on automatic processes. Journal of Behavioral Decision Making.

  • Glöckner, A., & Moritz, S. (2009). A fine-grained analysis of the jumping-to-conclusions bias in schizophrenia: Data-gathering, response confidence, and information integration. Judgment & Decision Making, 4, 587–600.

    Google Scholar 

  • Glöckner, A., & Witteman, C. (2010). Beyond dual-process models: A categorization of processes underlying intuitive judgment and decision making. Thinking & Reasoning, 16, 1–25.

    Article  Google Scholar 

  • Goldstein, D. G., & Gigerenzer, G. (1999). The recognition heuristic: How ignorance makes us smart. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristics that make us smart (pp. 37–58). New York: Oxford University Press.

    Google Scholar 

  • Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109, 75–90.

    PubMed  Article  Google Scholar 

  • Goldstein, D. G., & Gigerenzer, G. (2009). Fast and frugal forecasting. International Journal of Forecasting, 25, 760–772.

    Article  Google Scholar 

  • Hardman, D. (2009). Judgment and decision making. Malden, MA: Blackwell.

    Google Scholar 

  • Hausmann, D., & Läge, D. (2008). Sequential evidence accumulation in decision making: The individual desired level of confidence can explain the extent of information acquisition. Judgment & Decision Making, 3, 229–243.

    Google Scholar 

  • Hausmann, D., Läge, D., Pohl, R. F., & Bröder, A. (2007). Testing quickEst: No evidence for the quick-estimation heuristic. European Journal of Cognitive Psychology, 19, 446–456.

    Article  Google Scholar 

  • Hertwig, R., Herzog, S. M., Schooler, L. J., & Reimer, T. (2008). Fluency heuristic: A model of how the mind exploits a by-product of information retrieval. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 1191–1206.

    Article  Google Scholar 

  • Hilbig, B. E. (2008a). Individual differences in fast-and-frugal decision making: Neuroticism and the recognition heuristic. Journal of Research in Personality, 42, 1641–1645.

    Article  Google Scholar 

  • Hilbig, B. E. (2008b). One-reason decision making in risky choice? A closer look at the priority heuristic. Judgment & Decision Making, 3, 457–462.

    Google Scholar 

  • Hilbig, B. E. (2010). Precise models deserve precise measures: A methodological dissection. Judgment & Decision Making, 5, 272–284.

    Google Scholar 

  • Hilbig, B. E., Erdfelder, E., & Pohl, R. F. (2010). One-reason decision-making unveiled: A measurement model of the recognition heuristic. Journal of Experimental Psychology: Learning, Memory, & Cognition, 36, 123–134.

    Article  Google Scholar 

  • Hilbig, B. E., & Pohl, R. F. (2008). Recognizing users of the recognition heuristic. Experimental Psychology, 55, 394–401.

    PubMed  Google Scholar 

  • Hilbig, B. E., & Pohl, R. F. (2009). Ignoranceversus evidence-based decision making: A decision time analysis of the recognition heuristic. Journal of Experimental Psychology: Learning, Memory, & Cognition, 35, 1296–1305.

    Article  Google Scholar 

  • Hilbig, B. E., Pohl, R. F., & Bröder, A. (2009). Criterion knowledge: A moderator of using the recognition heuristic? Journal of Behavioral Decision Making, 22, 510–522.

    Article  Google Scholar 

  • Hilbig, B. E., Scholl, S. G., & Pohl, R. F. (2010). Think orblink—Is the recognition heuristic an “intuitive” strategy? Judgment & Decision Making, 5, 300–309.

    Google Scholar 

  • Hogarth, R. M., & Karelaia, N. (2007). Heuristic and linear models of judgment: Matching rules and environments. Psychological Review, 114, 733–758.

    PubMed  Article  Google Scholar 

  • Holyoak, K. J., & Simon, D. (1999). Bidirectional reasoning in decision making by constraint satisfaction. Journal of Experimental Psychology: General, 128, 3–31.

    Article  Google Scholar 

  • Jekel, M., Nicklisch, A., & Glöckner, A. (2010). Implementation of the multiple-measure maximum likelihood strategy classification method in R: Addendum to Glöckner (2009) and practical guide for application. Judgment & Decision Making, 5, 54–63.

    Google Scholar 

  • Johnson, E. J., Schulte-Mecklenbeck, M., & Willemsen, M. C. (2008). Process models deserve process data: Comment on Brandstätter, Gigerenzer, and Hertwig (2006). Psychological Review, 115, 263–272.

    PubMed  Article  Google Scholar 

  • Juslin, P., & Olsson, H. (2004). Note on the rationality of rule-based versus exemplar-based processing in human judgment. Scandinavian Journal of Psychology, 45, 37–47.

    PubMed  Article  Google Scholar 

  • Juslin, P., & Persson, M. (2002). PROBabilities from EXemplars (PROBEX): A “lazy” algorithm for probabilistic inference from generic knowledge. Cognitive Science, 26, 563–607.

    Article  Google Scholar 

  • Lee, M. D., & Cummins, T. D. (2004). Evidence accumulation in decision making: Unifying the “take the best” and the “rational” models. Psychonomic Bulletin & Review, 11, 343–352.

    Article  Google Scholar 

  • Marewski, J. N., Gaissmaier, W., & Gigerenzer, G. (2010). Good judgments do not require complex cognition. Cognitive Processing, 11, 103–121.

    PubMed  Article  Google Scholar 

  • Marewski, J. N., Gaissmaier, W., Schooler, L. J., Goldstein, D. G., & Gigerenzer, G. (2009). Do voters use episodic knowledge to rely on recognition? In N. A. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 2232–2237). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Marewski, J. N., Gaissmaier, W., Schooler, L. J., Goldstein, D. G., & Gigerenzer, G. (2010). From recognition to decisions: Extending and testing recognition-based models for multi-alternative inference. Psychonomic Bulletin & Review, 17, 287–309.

    Article  Google Scholar 

  • McCloy, R., Beaman, C. P., Frosch, C. A., & Goddard, K. (2010). Fast and frugal framing effects? Journal of Experimental Psychology: Learning, Memory, & Cognition, 36, 1043–1052.

    Article  Google Scholar 

  • Newell, B. R. (2005). Re-visions of rationality? Trends in Cognitive Sciences, 9, 11–15.

    PubMed  Article  Google Scholar 

  • Newell, B. R., & Bröder, A. (2008). Cognitive processes, models and metaphors in decision research. Judgment & Decision Making, 3, 195–204.

    Google Scholar 

  • Newell, B. R., Collins, P., & Lee, M. D. (2007). Adjusting the spanner: Testing an evidence accumulation model of decision making. In D. McNamara & G. Trafton (Eds.), Proceedings of the 29th Annual Conference of the Cognitive Science Society (pp. 533–538). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Newell, B. R., & Fernandez, D. (2006). On the binary quality of recognition and the inconsequentially of further knowledge: Two critical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19, 333–346.

    Article  Google Scholar 

  • Newell, B. R., & Lee, M. D. (in press). The right tool forthe job? Comparing an evidence accumulation and a naive strategy selection model of decision making. Journal of Behavioral Decision Making.

  • Newell, B. R., Rakow, T., Weston, N. J., & Shanks, D. R. (2004). Search strategies in decision making: The success of “success.” Journal of Behavioral Decision Making, 17, 117–137.

    Article  Google Scholar 

  • Newell, B. R., & Shanks, D. R. (2003). Take the best or look at the rest? Factors influencing “one-reason” decision making. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29, 53–65.

    Article  Google Scholar 

  • Newell, B. R., & Shanks, D. R. (2004). On the role of recognition in decision making. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30, 923–935.

    Article  Google Scholar 

  • Newell, B. R., Weston, N. J., & Shanks, D. R. (2003). Empirical tests of a fast-and-frugal heuristic: Not everyone “takes-the-best.” Organizational Behavior & Human Decision Processes, 91, 82–96.

    Article  Google Scholar 

  • Oppenheimer, D. M. (2003). Not so fast! (and not so frugal!): Rethinking the recognition heuristic. Cognition, 90, B1-B9.

    PubMed  Article  Google Scholar 

  • Pachur, T., Bröder, A., & Marewski, J. (2008). The recognition heuristic in memory-based inference: Is recognition a non-compensatory cue? Journal of Behavioral Decision Making, 21, 183–210.

    Article  Google Scholar 

  • Pachur, T., & Hertwig, R. (2006). On the psychology of the recognition heuristic: Retrieval primacy as a key determinant of its use. Journal of Experimental Psychology: Learning, Memory, & Cognition, 32, 983–1002.

    Article  Google Scholar 

  • Pohl, R. F. (2006). Empirical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19, 251–271.

    Article  Google Scholar 

  • Reimer, T., & Katsikopoulos, K. V. (2004). The use of recognition in group decision-making. Cognitive Science, 28, 1009–1029.

    Article  Google Scholar 

  • Richter, T., & Späth, P. (2006). Recognition is used as one cue among others in judgment and decision making. Journal of Experimental Psychology: Learning, Memory, & Cognition, 32, 150–162.

    Article  Google Scholar 

  • Rieskamp, J. (2008). The probabilistic nature of preferential choice. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 1446–1465.

    Article  Google Scholar 

  • Schooler, L. J., & Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological Review, 112, 610–628.

    PubMed  Article  Google Scholar 

  • Schweickart, O., Brown, N. R., & Lee, P. J. (2009, November). On the role of recognition and magnitude-comparison in binary decision tasks. Paper presented at the Annual Meeting of the Society for Judgment and Decision Making, Boston.

  • Snook, B., & Cullen, R. M. (2006). Recognizing National Hockey League greatness with an ignorance-based heuristic. Canadian Journal of Experimental Psychology, 60, 33–43.

    PubMed  Google Scholar 

  • Wikipedia (n.d.). List of cities proper by population. Retrieved October 2009 from http://en.wikipedia.org/wiki/List_of_cities_proper_by_population.

  • Zhao, J., & Oppenheimer, D. M. (2010). Beyond binary: Limitations of the binary choice paradigm for studying judgment heuristics. Manuscript submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin E. Hilbig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hilbig, B.E. Reconsidering “evidence” for fast-and-frugal heuristics. Psychon Bull Rev 17, 923–930 (2010). https://doi.org/10.3758/PBR.17.6.923

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3758/PBR.17.6.923

Keywords

  • Adherence Rate
  • Behavioral Decision
  • Cumulative Prospect Theory
  • Cognitive Science Society
  • Discrimination Rate