Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Psychonomic Bulletin & Review
  3. Article

Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis

  • Published: October 2009
  • Volume 16, pages 798–817, (2009)
  • Cite this article
Download PDF
Psychonomic Bulletin & Review Aims and scope Submit manuscript
Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis
Download PDF
  • Dora Matzke1 &
  • Eric-Jan Wagenmakers1 
  • 5408 Accesses

  • 321 Citations

  • 12 Altmetric

  • 1 Mention

  • Explore all metrics

Abstract

A growing number of researchers use descriptive distributions such as the ex-Gaussian and the shifted Wald to summarize response time data for speeded two-choice tasks. Some of these researchers also assume that the parameters of these distributions uniquely correspond to specific cognitive processes. We studied the validity of this cognitive interpretation by relating the parameters of the ex-Gaussian and shifted Wald distributions to those of the Ratcliff diffusion model, a successful model whose parameters have well-established cognitive interpretations. In a simulation study, we fitted the ex-Gaussian and shifted Wald distributions to data generated from the diffusion model by systematically varying its parameters across a wide range of plausible values. In an empirical study, the two descriptive distributions were fitted to published data that featured manipulations of task difficulty, response caution, and a priori bias. The results clearly demonstrate that the ex-Gaussian and shifted Wald parameters do not correspond uniquely to parameters of the diffusion model. We conclude that researchers should resist the temptation to interpret changes in the ex-Gaussian and shifted Wald parameters in terms of cognitive processes. Supporting materials may be downloaded from http://pbr.psychonomic-journals .org/content/supplemental.

Article PDF

Download to read the full article text

Similar content being viewed by others

A new criterion for assessing discriminant validity in variance-based structural equation modeling

Article Open access 22 August 2014

Jörg Henseler, Christian M. Ringle & Marko Sarstedt

RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods

Article 04 June 2018

Yan Xia & Yanyun Yang

Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R

Article Open access 05 May 2021

Levi Kumle, Melissa L.-H. Võ & Dejan Draschkow

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Andrews, S., & Heathcote, A. (2001). Distinguishing common and task-specific processes in word identification: A matter of some moment? Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 514–544.

    Article  Google Scholar 

  • Balota, D. A., & Spieler, D. H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General, 128, 32–55.

    Article  Google Scholar 

  • Blough, D. S. (1988). Quantitative relations between visual search speed and target—distractor similarity. Perception & Psychophysics, 43, 57–71.

    Article  Google Scholar 

  • Blough, D. S. (1989). Contrast as seen in visual search reaction times. Journal of the Experimental Analysis of Behavior, 52, 199–211.

    Article  PubMed  Google Scholar 

  • Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational & Graphical Statistics, 7, 434–455.

    Article  Google Scholar 

  • Burbeck, S. L., & Luce, R. D. (1982). Evidence from auditory simple reaction times for both change and level detectors. Perception & Psychophysics, 32, 117–133.

    Article  Google Scholar 

  • Carpenter, R. H. S., & Williams, M. L. L. (1995). Neural computation of log likelihood in control of saccadic eye movements. Nature, 377, 59–62.

    Article  PubMed  Google Scholar 

  • Emerson, P. L. (1970). Simple reaction time with Markovian evolution of Gaussian discriminal processes. Psychometrika, 35, 99–110.

    Article  Google Scholar 

  • Epstein, J. N.. Conners, C. K.. Hervey, A. S.. Tonev, S. T.. Arnold, L. E.. Abikoff, H. B.. et al. (2006). Assessing medication effects in the MTA study using neuropsychological outcomes. Journal of Child Psychology & Psychiatry, 47, 446–456.

    Article  Google Scholar 

  • Farrell, S., & Ludwig, C. J. H. (2008). Bayesian and maximum likelihood estimation of hierarchical response time models. Psychonomic Bulletin & Review, 15, 1209–1217.

    Article  Google Scholar 

  • Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/ hierarchical models. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gholson, B., & Hohle, R. H. (1968a). Choice reaction times to hues printed in conflicting hue names and nonsense words. Journal of Experimental Psychology, 76, 413–418.

    Article  PubMed  Google Scholar 

  • Gholson, B., & Hohle, R. (1968b). Verbal reaction times to hues and hue names and forms and form names. Perception & Psychophysics, 3, 191–196.

    Article  Google Scholar 

  • Gomez, P.. Ratcliff, R., & Perea, M. (2007). A model of the go/no-go task. Journal of Experimental Psychology: General, 136, 389–413.

    Article  Google Scholar 

  • Gordon, B., & Carson, K. (1990). The basis for choice reaction time slowing in Alzheimer’s disease. Brain & Cognition, 13, 148–166.

    Article  Google Scholar 

  • Heathcote, A. (2004). Fitting Wald and ex-Wald distributions to response time data: An example using functions for the S-PLUS package. Behavior Research Methods, Instruments, & Computers, 36, 678–694.

    Article  Google Scholar 

  • Heathcote, A.. Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109, 340–347.

    Article  Google Scholar 

  • Hockley, W. E. (1982). Retrieval processes in continuous recognition. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8, 497–512.

    Article  Google Scholar 

  • Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes. Journal of Experimental Psychology: Learning, Memory, & Cognition, 10, 598–615.

    Article  Google Scholar 

  • Hohle, R. H. (1965). Inferred components of reaction times as functions of foreperiod duration. Journal of Experimental Psychology, 69, 382–386.

    Article  PubMed  Google Scholar 

  • Kieffaber, P. D.. Kappenman, E. S.. Bodkins, M.. Shekhar, A., O’Donnell, B. F., & Hetrick, W. P. (2006). Switch and maintenance of task set in schizophrenia. Schizophrenia Research, 84, 345–358.

    Article  PubMed  Google Scholar 

  • Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review, 15, 1–15.

    Article  Google Scholar 

  • Leth-Steensen, C.. King Elbaz, Z., & Douglas, V. I. (2000). Mean response times, variability and skew in the responding of ADHD children: A response time distributional approach. Acta Psychologica, 104, 167–190.

    Article  PubMed  Google Scholar 

  • Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. New York: Oxford University Press.

    Google Scholar 

  • Lunn, D. J.. Thomas, A.. Best, N., & Spiegelhalter, D. (2000). WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics & Computing, 10, 325–337.

    Article  Google Scholar 

  • Madden, D. J.. Gottlob, L. R.. Denny, L. L.. Turkington, T. G., Provenzale, J. M.. Hawk, T. C., & Coleman, R. E. (1999). Aging and recognition memory: Changes in regional cerebral blood flow associated with components of reaction time distributions. Journal of Cognitive Neuroscience, 11, 511–520.

    Article  PubMed  Google Scholar 

  • McGill, W. [J.] (1963). Stochastic latency mechanisms. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 1, pp. 309–360). New York: Wiley.

    Google Scholar 

  • McGill, W. J., & Gibbon, J. (1965). The general-gamma distribution and reaction times. Journal of Mathematical Psychology, 2, 1–18.

    Article  Google Scholar 

  • Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47, 90–100.

    Article  Google Scholar 

  • Okada, R. (1971). Decision latencies in short-term recognition memory. Journal of Experimental Psychology, 90, 27–32.

    Article  PubMed  Google Scholar 

  • Penner-Wilger, M.. Leth-Steensen, C., & LeFevre, J.-A. (2002). Decomposing the problem-size effect: A comparison of response time distributions across cultures. Memory & Cognition, 30, 1160–1167.

    Article  Google Scholar 

  • Plourde, C. E., & Besner, D. (1997). On the locus of the word frequency effect in visual word recognition. Canadian Journal of Experimental Psychology, 51, 181–194.

    Google Scholar 

  • Possamaï, C.-A. (1991). A responding hand effect in a simple-RT precueing experiment: Evidence for a late locus of facilitation. Acta Psychologica, 77, 47–63.

    Article  PubMed  Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

    Article  Google Scholar 

  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510–532.

    Article  PubMed  Google Scholar 

  • Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin & Review, 9, 278–291.

    Article  Google Scholar 

  • Ratcliff, R.. Gomez, P., & McKoon, G. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111, 159–182.

    Article  PubMed  Google Scholar 

  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922.

    Article  PubMed  Google Scholar 

  • Ratcliff, R., & Murdock, B. B. (1976). Retrieval processes in recognition memory. Psychological Review, 83, 190–214.

    Article  Google Scholar 

  • Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of masking in two-choice letter identification. Journal of Experimental Psychology: Human Perception & Performance, 26, 127–140.

    Article  Google Scholar 

  • Ratcliff, R.. Thapar, A.. Gomez, P., & McKoon, G. (2004). A diffusion model analysis of the effects of aging in the lexical-decision task. Psychology & Aging, 19, 278–289.

    Article  Google Scholar 

  • Ratcliff, R.. Thapar, A., & McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology & Aging, 16, 323–341.

    Article  Google Scholar 

  • Ratcliff, R.. Thapar, A., & McKoon, G. (2003). A diffusion model analysis of the effects of aging on brightness discrimination. Perception & Psychophysics, 65, 523–535.

    Article  Google Scholar 

  • Ratcliff, R.. Thapar, A., & McKoon, G. (2004). A diffusion model analysis of the effects of aging on recognition memory. Journal of Memory & Language, 50, 408–424.

    Article  Google Scholar 

  • Rohrer, D. (1996). On the relative and absolute strength of a memory trace. Memory & Cognition, 24, 188–201.

    Article  Google Scholar 

  • Rohrer, D. (2002). The breadth of memory search. Memory, 10, 291–301.

    Article  PubMed  Google Scholar 

  • Rohrer, D., & Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall. Memory & Cognition, 22, 511–524.

    Article  Google Scholar 

  • Rotello, C. M., & Zeng, M. (2008). Analysis of RT distributions in the remember—know paradigm. Psychonomic Bulletin & Review, 15, 825–832.

    Article  Google Scholar 

  • Rouder, J. N.. Lu, J.. Speckman, P.. Sun, D., & Jiang, Y. (2005). A hierarchical model for estimating response time distributions. Psychonomic Bulletin & Review, 12, 195–223.

    Article  Google Scholar 

  • Rouder, J. N.. Sun, D.. Speckman, P. L.. Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 589–606.

    Article  Google Scholar 

  • Schmiedek, F.. Oberauer, K.. Wilhelm, O.. Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136, 414–429.

    Article  Google Scholar 

  • Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143–153.

    Article  PubMed  Google Scholar 

  • Schwarz, W. (2001). The ex-Wald distribution as a descriptive model of response times. Behavior Research Methods, Instruments, & Computers, 33, 457–469.

    Article  Google Scholar 

  • Schwarz, W. (2002). On the convolution of inverse Gaussian and exponential random variables. Communications in Statistics: Theory & Methods, 31, 2113–2121.

    Article  Google Scholar 

  • Shiffrin, R. M.. Lee, M. D.. Kim, W., & Wagenmakers, E.-J. (2008). A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science, 32, 1248–1284.

    Article  Google Scholar 

  • Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time. Psychological Review, 102, 567–593.

    Article  Google Scholar 

  • Spieler, D. H. (2001). Modelling age-related changes in information processing. European Journal of Cognitive Psychology, 13, 217–234.

    Google Scholar 

  • Spieler, D. H.. Balota, D. A., & Faust, M. E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type. Journal of Experimental Psychology: Human Perception & Performance, 22, 461–479.

    Article  Google Scholar 

  • Spieler, D. H.. Balota, D. A., & Faust, M. E. (2000). Levels of selective attention revealed through analyses of response time distributions. Journal of Experimental Psychology: Human Perception & Performance, 26, 506–526.

    Article  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654.

    Article  PubMed  Google Scholar 

  • Thapar, A.. Ratcliff, R., & McKoon, G. (2003). A diffusion model analysis of the effects of aging on letter discrimination. Psychology & Aging, 18, 415–429.

    Article  Google Scholar 

  • Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review, 14, 1011–1026.

    Article  Google Scholar 

  • Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis with MATLAB: A DMAT primer. Behavior Research Methods, 40, 61–72.

    Article  PubMed  Google Scholar 

  • Voss, A.. Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32, 1206–1220.

    Article  Google Scholar 

  • Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. European Journal of Cognitive Psychology, 21, 641–671.

    Article  Google Scholar 

  • Wagenmakers, E.-J.. Ratcliff, R.. Gomez, P., & McKoon, G. (2008). A diffusion model account of criterion shifts in the lexical decision task. Journal of Memory & Language, 58, 140–159.

    Article  Google Scholar 

  • Wagenmakers, E.-J.. van der Maas, H. L. J.. Dolan, C. V., & Grasman, R. P. P. P. (2008). EZ does it! Extensions of the EZ-diffusion model. Psychonomic Bulletin & Review, 15, 1229–1235.

    Article  Google Scholar 

  • Wagenmakers, E.-J.. van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14, 3–22.

    Article  Google Scholar 

  • Wald, A. (1947). Sequential analysis. New York: Wiley.

    Google Scholar 

  • Wickelgren, W. A. (1977). Speed—accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 67–85.

    Article  Google Scholar 

  • Wixted, J. T.. Ghadisha, H., & Vera, R. (1997). Recall latency following pure- and mixed-strength lists: A direct test of the relative strength model of free recall. Journal of Experimental Psychology: Learning, Memory, & Cognition, 23, 523–538.

    Article  Google Scholar 

  • Wixted, J. T., & Rohrer, D. (1993). Proactive interference and the dynamics of free recall. Journal of Experimental Psychology: Learning, Memory, & Cognition, 19, 1024–1039.

    Article  Google Scholar 

  • Yap, M. J., & Balota, D. A. (2007). Additive and interactive effects on response time distributions in visual word recognition. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 274–296.

    Article  Google Scholar 

  • Yap, M. J.. Balota, D. A.. Cortese, M. J., & Watson, J. M. (2006). Single- versus dual-process models of lexical decision performance: Insights from response time distributional analysis. Journal of Experimental Psychology: Human Perception & Performance, 32, 1324–1344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB, Amsterdam, The Netherlands

    Dora Matzke & Eric-Jan Wagenmakers

Authors
  1. Dora Matzke
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eric-Jan Wagenmakers
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Dora Matzke or Eric-Jan Wagenmakers.

Additional information

This research was supported by a Vidi grant from the Dutch Organization for Scientific Research (NWO).

Electronic supplementary material

Supplementary material, approximately 340 KB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzke, D., Wagenmakers, EJ. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review 16, 798–817 (2009). https://doi.org/10.3758/PBR.16.5.798

Download citation

  • Received: 16 October 2008

  • Accepted: 11 April 2009

  • Issue Date: October 2009

  • DOI: https://doi.org/10.3758/PBR.16.5.798

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Diffusion Model
  • Lexical Decision
  • Word Frequency
  • Drift Rate
  • Response Time Distribution
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature