Psychonomic Bulletin & Review

, Volume 15, Issue 3, pp 598–603 | Cite as

Latent structure in measures of associative, semantic, and thematic knowledge

Brief Reports
  • 451 Downloads

Abstract

There has been much debate about the relation between knowledge for meaning (semantic memory) and knowledge for words in context (associative memory). Many measures of that knowledge exist, but do they all measure the same thing? In this study, scaling, clustering, and factor-analytic techniques were used to reveal the structure underlying 13 variables. Semantic similarity determined from lexicographic measures is shown to be separable from the associative strength determined from word association norms, and these semantic and associative measures are in turn separable from abstract representations derived from computational analyses of large bodies of text. The three-factor structure is at odds with traditional views of word knowledge. The expression of long-term knowledge about words and the concepts they represent may be better viewed in terms of associative, semantic, and thematic information.

References

  1. Banerjee, S., & Pedersen, T. (2002). An adapted Lesk algorithm for word sense disambiguation using WordNet. Proceedings of the Third International Conference on Intelligent Text Processing and Computational Linguistics, February 17–23, Mexico City.Google Scholar
  2. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  3. Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407–428.CrossRefGoogle Scholar
  4. Deese, J. (1965). The structure of associations in language and thought. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  5. Esper, E. A. (1973). Analogy and association in linguistics and psychology. Athens: University of Georgia Press.Google Scholar
  6. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.CrossRefGoogle Scholar
  7. Fellbaum, C. (Ed.) (1998). WordNet: An electronic lexical database. Cambridge, MA: MIT Press. Available at wordnet.princeton.edu.Google Scholar
  8. Firth, J. R. (1968). A synopsis of linguistic theory 1930–1955. In F. R. Palmer (Ed.), Selected papers of J. R. Firth 1952–1959 (pp. 137–167). Bloomington: Indiana University Press.Google Scholar
  9. Fodor, J. A. (1983). The modularity of mind: An essay on faculty psychology. Cambridge, MA: MIT Press.Google Scholar
  10. Galton, F. (1879). Psychometric experiments. Brain, 2, 149–162.CrossRefGoogle Scholar
  11. Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114, 211–244.PubMedCrossRefGoogle Scholar
  12. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185.PubMedCrossRefGoogle Scholar
  13. Hutchison, K. A. (2003). Is semantic priming due to association strength or featural overlap? A microanalytic review. Psychonomic Bulletin & Review, 10, 785–813.CrossRefGoogle Scholar
  14. Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. Proceedings of International Conference Research on Computational Linguistics (ROCLING X), Taiwan.Google Scholar
  15. Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-dimensional semantic space accounts of priming. Journal of Memory & Language, 55, 534–552.CrossRefGoogle Scholar
  16. Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114, 1–37.PubMedCrossRefGoogle Scholar
  17. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240.CrossRefGoogle Scholar
  18. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25, 259–284.CrossRefGoogle Scholar
  19. Lorenzo-Seva, U. (2003). A factor simplicity index. Psychometrika, 68, 49–60.CrossRefGoogle Scholar
  20. Lorenzo-Seva, U., & Ferrando, P. J. (2006). FACTOR: A computer program to fit the exploratory factor analysis model. Behavior Research Methods, 38, 88–91.PubMedCrossRefGoogle Scholar
  21. Lucas, M. (2000). Semantic priming without association: A meta-analytic review. Psychonomic Bulletin & Review, 7, 618–630.Google Scholar
  22. Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28, 203–208.Google Scholar
  23. Maki, W. S. (2007). Judgments of associative memory. Cognitive Psychology, 54, 319–353.PubMedCrossRefGoogle Scholar
  24. Masson, M. E. J. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 3–23.CrossRefGoogle Scholar
  25. McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547–559.PubMedCrossRefGoogle Scholar
  26. Michelizzi, J., & Pedersen, T. (2005). WordNet-SenseRelate-WordToSet-0.02. Available at search.cpan.org/dist/WordNet-SenseRelate-WordToSet.Google Scholar
  27. Nelson, D. L., Dyrdal, G. M., & Goodmon, L. B. (2005). What is preexisting strength? Predicting free association probabilities, similarity ratings, and cued recall probabilities. Psychonomic Bulletin & Review, 12, 711–719.Google Scholar
  28. Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36, 402–407.Google Scholar
  29. Patwardhan, S., & Pedersen, T. (2003). WordNet::Similarity. Available at search.cpan.org/dist/WordNet-Similarity.Google Scholar
  30. Spence, D. P., & Owens, K. C. (1990). Lexical co-occurrence and association strength. Journal of Psycholinguistic Research, 19, 317–330.CrossRefGoogle Scholar
  31. SPSS for Windows, Rel. 14.0.0. (2005). Chicago: SPSS Inc.Google Scholar
  32. Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2005). Word association spaces for predicting semantic similarity effects in episodic memory. In A. F. Healy (Ed.), Experimental cognitive psychology and its applications (pp. 237–249). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  33. Stolz, J. A., & Besner, D. (1999). On the myth of automatic semantic activation in reading. Current Directions in Psychological Science, 8, 61–65.CrossRefGoogle Scholar
  34. Thurstone, L. S. (1947). Multiple factor analysis. Chicago: University of Chicago Press.Google Scholar
  35. Vinson, D., & Vigliocco, G. (2008). Semantic feature production norms for a large set of objects and events. Behavior Research Methods, 40, 183–190.PubMedCrossRefGoogle Scholar
  36. Williams, J. N. (1996). Is automatic priming semantic? European Journal of Cognitive Psychology, 8, 113–161.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  1. 1.Department of PsychologyTexas Tech UniversityLubbock

Personalised recommendations