Skip to main content
Log in

What form of memory underlies novelty preferences?

  • Brief Reports
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Novelty preferences (longer fixations on new stimuli than on previously presented stimuli) are widely used to assess memory in nonverbal populations, such as human infants and experimental animals, yet important questions remain about the nature of the processes that underlie them. We used a classical conditioning paradigm to test whether novelty preferences reflect (1) a stimulus-driven bias toward novelty in visual selective attention or (2) explicit memory for old stimuli. Results indicated that conditioning affected adults’ looking behavior in the visual paired comparison, but not their recognition memory judgments. Furthermore, the typically observed novelty preference occurred only when a bias toward novelty had no competition from a bias toward salience due to conditioning. These results suggest that novelty preferences may reflect attentional processes and implicit memory to a greater degree than explicit memory, a finding with important implications for understanding memory in nonverbal populations and the development of memory in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baeyens, F., Eelen, P., & Van den Bergh, O. (1990). Contingency awareness in evaluative conditioning: A case for unaware affective-evaluative learning. Cognition & Emotion, 4, 3–18.

    Article  Google Scholar 

  • Begleiter, H., Porjesz, B., & Wang, W. (1993). A neurophysiologic correlate of visual short-term memory in humans. Electroencephalography & Clinical Neurophysiology, 87, 46–53.

    Article  Google Scholar 

  • Center for the Study of Emotion and Attention [CSEA-NIMH] (1999). The international affective picture system: Digitized photographs. Gainesville: University of Florida, Center for Research in Psychophysiology.

    Google Scholar 

  • Cohen, J.[D.], MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: An interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh computers. Behavior Research Methods, Instruments, & Computers, 25, 257–271.

    Article  Google Scholar 

  • Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences, 93, 13494–13499.

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Reviews in Neuroscience, 18, 193–222.

    Article  Google Scholar 

  • Fahy, F. L., Riches, I. P., & Brown, M. W. (1993). Neuronal activity related to visual recognition memory: Long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior rhinal cortex. Experimental Brain Research, 96, 457–472.

    Article  Google Scholar 

  • Fantz, R. L. (1964). Visual experience in infants: Decreased attention to familiar patterns relative to novel ones. Science, 146, 668–670.

    Article  PubMed  Google Scholar 

  • Haith, M. M. (1998). Who put the cog in infant cognition? Is rich interpretation too costly? Infant Behavior & Development, 21, 167–179.

    Article  Google Scholar 

  • Hood, B. M. (2004). Is looking good enough or does it beggar belief ? Developmental Science, 7, 415–417.

    Article  PubMed  Google Scholar 

  • Kunst-Wilson, W. R., & Zajonc, R. B. (1980). Affective discrimination of stimuli that cannot be recognized. Science, 207, 557–558.

    Article  PubMed  Google Scholar 

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1999). The international affective picture system (IAPS): Technical manual and affective ratings. Gainesville: University of Florida, Center for Research in Psychophysiology.

    Google Scholar 

  • Li, L., Miller, E. K., & Desimone, R. (1993). The representation of stimulus familiarity in anterior inferior temporal cortex. Journal of Neurophysiology, 69, 1918–1929.

    PubMed  Google Scholar 

  • Liu, Z., Kersten, D., & Knill, D. C. (1999). Dissociating stimulus information from internal representation—a case study in object recognition. Vision Research, 39, 603–612.

    Article  PubMed  Google Scholar 

  • Mandler, J. M. (1988). How to build a baby: On the development of an accessible representational system. Cognitive Development, 3, 113–136.

    Article  Google Scholar 

  • Manns, J. R., Stark, C. E. L., & Squire, L. R. (2000). The visual paired-comparison task as a measure of declarative memory. Proceedings of the National Academy of Sciences, 97, 12375–12379.

    Article  Google Scholar 

  • McKee, R. D., & Squire, L. R. (1993). On the development of declarative memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 19, 397–404.

    Article  Google Scholar 

  • Miller, E. K., Gochin, P. M., & Gross, C. G. (1991). Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque. Visual Neuroscience, 7, 357–362.

    Article  PubMed  Google Scholar 

  • Nelson, C. A. (1995). The ontogeny of human memory: A cognitive neuroscience perspective. Developmental Psychology, 31, 723–738.

    Article  Google Scholar 

  • Nemanic, S., Alvarado, M. C., & Bachevalier, J. (2004). The hippocampal/parahippocampal regions and recognition memory: Insights from visual paired comparison versus object-delayed nonmatching in monkeys. Journal of Neuroscience, 24, 2013–2026.

    Article  PubMed  Google Scholar 

  • Nosofsky, R. M., & Zaki, S. R. (1998). Dissociations between categorization and recognition in amnesic and normal individuals: An exemplar-based interpretation. Psychological Science, 9, 247–255.

    Article  Google Scholar 

  • Palmeri, T. J., & Flanery, M. A. (1999). Learning about categories in the absence of training: Profound amnesia and the relationship between perceptual categorization and recognition memory. Psychological Science, 10, 526–530.

    Article  Google Scholar 

  • Pascalis, O., & de Schonen, S. (1994). Recognition memory in 3- to 4-day-old human neonates. NeuroReport, 5, 1721–1724.

    Article  PubMed  Google Scholar 

  • Reicher, G. M., Snyder, C. R., & Richards, J. T. (1976). Familiarity of background characters in visual scanning. Journal of Experimental Psychology: Human Perception & Performance, 2, 522–530.

    Article  Google Scholar 

  • Roder, B. J., Bushnell, E. W., & Sasseville, A. M. (2000). Infants’ preferences for familiarity and novelty during the course of visual processing. Infancy, 1, 491–507.

    Article  Google Scholar 

  • Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2004). Infant visual recognition memory. Developmental Review, 24, 74–100.

    Article  Google Scholar 

  • Rose, S. A., Gottfried, A. W., Melloy-Carminar, P., & Bridger, W. H. (1982). Familiarity and novelty preferences in infant recognition memory: Implications for information processing. Developmental Psychology, 18, 704–713.

    Article  Google Scholar 

  • Rovee-Collier, C. (1997). Dissociations in infant memory: Rethinking the development of implicit and explicit memory. Psychological Review, 104, 467–498.

    Article  PubMed  Google Scholar 

  • Schacter, D. L., & Moscovitch, M. (1984). Infants, amnesics, and dissociable memory systems. In M. Moscovitch (Ed.), Infant memory (pp. 173–216). New York: Plenum.

    Chapter  Google Scholar 

  • Sirois, S., & Mareschal, D. (2004). An interacting systems model of infant habituation. Journal of Cognitive Neuroscience, 16, 1352–1362.

    Article  PubMed  Google Scholar 

  • Snyder, K. A. (2007). Neural mechanisms underlying memory and attention in preferential looking tasks. In L. M. Oakes & P. J. Bauer (Eds.), Short- and long-term memory in infancy and early childhood: Taking the first steps toward remembering (pp. 179–208). New York: Oxford University Press.

    Google Scholar 

  • Vanderplas, J. M., & Garvin, E. A. (1959a). The association value of random shapes. Journal of Experimental Psychology, 57, 147–154.

    Article  PubMed  Google Scholar 

  • Vanderplas, J. M., & Garvin, E. A. (1959b). Complexity, association value, and practice as factors in shape recognition following paired-associates training. Journal of Experimental Psychology, 57, 155–163.

    Article  PubMed  Google Scholar 

  • Wan, H., Aggleton, J. P., & Brown, M. W. (1999). Different contributions of the hippocampus and perirhinal cortex to recognition memory. Journal of Neuroscience, 19, 1142–1148.

    PubMed  Google Scholar 

  • Zhu, X. O., Brown, M. W., McCabe, B. J., & Aggleton, J. P. (1995). Effects of the novelty or familiarity of visual stimuli on the expression of the intermediate early gene c-fos in rat brain. Neuroscience, 69, 821–829.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Snyder.

Additional information

Research and manuscript preparation were made possible in part by grants from the National Institute of Mental Health (MH12952) and the National Institute of Child Health and Human Development (R03-HD049366) to K.A.S. and from the National Institute of Mental Health (MH60442) to C.J.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, K.A., Blank, M.P. & Marsolek, C.J. What form of memory underlies novelty preferences?. Psychonomic Bulletin & Review 15, 315–321 (2008). https://doi.org/10.3758/PBR.15.2.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/PBR.15.2.315

Keywords

Navigation