Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Psychonomic Bulletin & Review
  3. Article
Selective storage and maintenance of an object’s features in visual working memory
Download PDF
Download PDF
  • Brief Reports
  • Published: February 2008

Selective storage and maintenance of an object’s features in visual working memory

  • Geoffrey F. Woodman1 &
  • Edward K. Vogel2 

Psychonomic Bulletin & Review volume 15, pages 223–229 (2008)Cite this article

  • 2551 Accesses

  • 187 Citations

  • Metrics details

Abstract

It has been shown that we have a highly capacity-limited representational space with which to store objects in visual working memory. However, most objects are composed of multiple feature attributes, and it is unknown whether observers can voluntarily store a single attribute of an object without necessarily storing all of its remaining features. In this study, we used a masking paradigm to measure the efficiency of encoding, and neurophysiological recordings to directly measure visual working memory maintenance while subjects viewed multifeature objects and were required to remember only a single feature or all of the features of the objects. We found that measures of both encoding and maintenance varied systematically as a function of which object features were task relevant. These experiments show that individuals can control which features of an object are selectively stored in working memory.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Averbach, E., & Coriel, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328.

    Google Scholar 

  • Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299, 81–86.

    Article  PubMed  Google Scholar 

  • Chaffee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79, 2919–2940.

    Google Scholar 

  • Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception & Performance, 21, 109–127.

    Article  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24, 87–185.

    Article  Google Scholar 

  • Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501–517.

    Article  Google Scholar 

  • Gegenfurtner, K. R., & Sperling, G. (1993). Information transfer in iconic memory experiments. Journal of Experimental Psychology: Human Perception & Performance, 19, 845–866.

    Article  Google Scholar 

  • Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 125–155). Cambridge, MA: MIT Press, Bradford Books.

    Google Scholar 

  • Kristjansson, A. (2006a). Simultaneous priming along multiple dimensions in a visual search task. Vision Research, 46, 2554–2570.

    Article  PubMed  Google Scholar 

  • Kristjansson, A. (2006b). Surface assignment modulates object formation for visual short-term memory. Perception, 35, 865–881.

    Article  PubMed  Google Scholar 

  • Loftus, G. R., & Loftus, E. F. (1988). Essence of statistics (2nd ed.). New York: Random House.

    Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.

    Article  PubMed  Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672.

    Google Scholar 

  • McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cerebral Cortex, 43, 77–94.

    Google Scholar 

  • Miller, E. K., & Desimone, R. (1991). A neural mechanism for working and recognition memory in inferior temporal cortex. Science, 254, 1377–1379.

    Article  PubMed  Google Scholar 

  • Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16, 5154–5167.

    PubMed  Google Scholar 

  • Miller, E. K., Li, L., & Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. Journal of Neuroscience, 13, 1460–1478.

    PubMed  Google Scholar 

  • O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44, 369–378.

    Google Scholar 

  • Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283–290.

    Google Scholar 

  • Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning & Memory, 2, 509–522.

    Article  Google Scholar 

  • Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.

    Article  PubMed  Google Scholar 

  • Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.

    Article  PubMed  Google Scholar 

  • Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64, 754–763.

    Article  Google Scholar 

  • Sereno, A. B., & Amador, S. C. (2006). Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. Journal of Neurophysiology, 95, 1078–1098.

    Article  PubMed  Google Scholar 

  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74 (Whole No. 498).

  • Stefurak, D. L., & Boynton, R. M. (1986). Independence of memory for categorically different colors and shapes. Perception & Psychophysics, 39, 164–174.

    Google Scholar 

  • Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or locations? Journal of Experimental Psychology: General, 123, 146–160.

    Article  Google Scholar 

  • Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception & Performance, 24, 1656–1674.

    Article  Google Scholar 

  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 27, 92–114.

    Article  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32, 1436–1451.

    Article  Google Scholar 

  • Wheeler, M., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64.

    Article  Google Scholar 

  • Woodman, G. F., & Vogel, E. K. (2005). Fractionating working memory: Encoding and maintenance are independent processes. Psychological Science, 16, 106–113.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, Vanderbilt University, Wilson Hall, 111 21st Avenue South, 37240-1103, Nashville, TX

    Geoffrey F. Woodman

  2. University of Oregon, Eugene, Oregon

    Edward K. Vogel

Authors
  1. Geoffrey F. Woodman
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Edward K. Vogel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Geoffrey F. Woodman.

Additional information

This research was supported by National Research Service Award F32-EY015043 and a Vanderbilt University Discovery Grant to G.F.W. and NSF Grant BCS-0617681 to E.K.V.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woodman, G.F., Vogel, E.K. Selective storage and maintenance of an object’s features in visual working memory. Psychonomic Bulletin & Review 15, 223–229 (2008). https://doi.org/10.3758/PBR.15.1.223

Download citation

  • Received: 19 March 2007

  • Accepted: 25 June 2007

  • Issue Date: February 2008

  • DOI: https://doi.org/10.3758/PBR.15.1.223

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Stimulus Onset Asynchrony
  • Retention Interval
  • Rapid Serial Visual Presentation
  • Visual Working Memory
  • Color Condition
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.134.157

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.