Memory & Cognition

, Volume 37, Issue 5, pp 632–643 | Cite as

An encounter frequency account of how experience affects likelihood estimation

  • Natalie A. Obrecht
  • Gretchen B. Chapman
  • Rochel Gelman
Article

Abstract

When making judgments, people often favor information received from a few individual sources over largesample statistical data. Individual information is usually acquired piece by piece, whereas statistical information combines many observations into a single summary. We examined whether this difference in the frequency of encounters affects how data are weighted. In two experiments, subjects read statistical information indicating an event to be rare and contrasting information from individual cases suggesting the event to be common. We controlled whether the individual cases were summarized into a single summary like statistical information, or presented serially, case by case. Subjects’ estimates of event frequencies were higher when the individual cases were presented in serial, rather than summarized, format. A third study demonstrated that subjects treat each data sample as an instance, and do not weight according to sample size. These results support the conclusion that people weight information according to encounter frequency.

References

  1. Borgida, E., & Nisbett, R. E. (1977). The differential impact of abstract vs. concrete information on decisions. Journal of Applied Social Psychology, 7, 258–271. doi:10.1111/j.1559-1816.1977.tb00750.xCrossRefGoogle Scholar
  2. Brase, G. L., & Barbey, A. K. (2006). Mental representations of statistical information. In A. Columbus (Ed.), Advances in psychology research (Vol. 41, pp. 91–113). Hauppauge, NY: Nova Science.Google Scholar
  3. Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition, 58, 1–73. doi:10.1016/0010-0277(95)00664-8CrossRefGoogle Scholar
  4. Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of number in the animal and human brain. Trends in Neurosciences, 21, 355–361. doi:10.1016/S0166-2236(98)01263-6CrossRefPubMedGoogle Scholar
  5. Fagerlin, A., Wang, C., & Ubel, P. A. (2005). Reducing the influence of anecdotal reasoning on people’s health care decisions: Is a picture worth a thousand statistics? Medical Decision Making, 25, 398–405. doi:10.1177/0272989X05278931CrossRefPubMedGoogle Scholar
  6. Fong, G. T., Krantz, D. H., & Nisbett, R. E. (1986). The effects of statistical training on thinking about everyday problems. Cognitive Psychology, 18, 253–292. doi:10.1016/0010-0285(86)90001-0CrossRefGoogle Scholar
  7. Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19, 25–42. doi:10.1257/ 089533005775196732CrossRefGoogle Scholar
  8. Gelman, R. (1996). Domain specificity in cognitive development: Universals and nonuniversals. In M. Sabourin, F. I. M. Craik, & M. Robert (Eds.), Advances in psychological science Vol. 2, pp. 567–579). Hove, U.K.: Taylor & Francis.Google Scholar
  9. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684–704. doi:10.1037/0033-295X.102.4.684CrossRefGoogle Scholar
  10. Gottlieb, D., Weiss, T., & Chapman, G. B. (2007). The format in which uncertainty information is presented affects decision biases. Psychological Science, 18, 240–246. doi:10.1111/j.1467-9280.2007.01883.xCrossRefPubMedGoogle Scholar
  11. Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics 3: Speech acts (pp. 41–58). New York: Academic Press.Google Scholar
  12. Hasher, L., Goldstein, D., & Toppino, T. (1977). Frequency and the conference of referential validity. Journal of Verbal Learning & Verbal Behavior, 16, 107–112. doi:10.1016/S0022-5371(77)80012-1CrossRefGoogle Scholar
  13. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356–388. doi:10.1037/0096-3445.108.3.356CrossRefGoogle Scholar
  14. Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–1388. doi:10.1037/0003-066X.39.12.1372CrossRefPubMedGoogle Scholar
  15. Hasher, L., Zacks, R. T., Rose, K. C., & Sanft, H. (1987). Truly incidental encoding of frequency information. American Journal of Psychology, 100, 69–91. doi:10.2307/1422643CrossRefPubMedGoogle Scholar
  16. Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological Science, 15, 534–539. doi:10.1111/j.0956-7976.2004.00715.xCrossRefPubMedGoogle Scholar
  17. Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103, 19599–19604. doi:10.1073/pnas.0609485103CrossRefGoogle Scholar
  18. Kokis, J. V., Macpherson, R., Toplak, M. E., West, R. F., & Stanovich, K. E. (2002). Heuristic and analytic processing: Age trends and associations with cognitive ability and cognitive styles. Journal of Experimental Child Psychology, 83, 26–52. doi:10.1016/ S0022-0965(02)00121-2CrossRefPubMedGoogle Scholar
  19. Lehman, D. R., Lempert, R. O., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: Formal discipline and thinking about everyday-life events. American Psychologist, 43, 431–442. doi:10.1037/0003-066X.43.6.431CrossRefGoogle Scholar
  20. Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy scale among highly educated samples. Medical Decision Making, 21, 37–44. doi:10.1177/0272989X0102100105CrossRefPubMedGoogle Scholar
  21. Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127, 267–286. doi:10.1037/0033-2909.127.2.267CrossRefPubMedGoogle Scholar
  22. Nisbett, R. E., Krantz, D. H., Jepson, C., & Kunda, Z. (1983). The use of statistical heuristics in everyday inductive reasoning. Psychological Review, 90, 339–363. doi:10.1037/0033-295X.90.4.339CrossRefGoogle Scholar
  23. Nisbett, R. E., & Ross, L. D. (1980). Human inference: Strategies and shortcomings of social judgment. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  24. Obrecht, N. A., Chapman, G. B., & Gelman, R. (2007). Intuitive t tests: Lay use of statistical information. Psychonomic Bulletin & Review, 14, 1147–1152.CrossRefGoogle Scholar
  25. Obrecht, N. A., Chapman, G. B., & Suarez, M. T. (2009). Matching data with context: The integration of statistical variance and realworld knowledge. Manuscript submitted for publication.Google Scholar
  26. Peters, E., Västfjäll, D., Slovic, P., Mertz, C. K., Mazzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological Science, 17, 408–414. doi:10.1111/j.1467-9280.2006.01720.xCrossRefGoogle Scholar
  27. Reyna, V. F., & Brainerd, C. J. (1995). Fuzzy-trace theory: An interim synthesis. Learning & Individual Differences, 7, 1–75. doi:10.1016/1041-6080%2895%2990031-4CrossRefGoogle Scholar
  28. Sedlmeier, P., & Gigerenzer, G. (1997). Intuitions about sample size: The empirical law of large numbers. Journal of Behavioral Decision Making, 10, 33–51. doi:10.1002/(SICI)1099-0771(199703)10:1<33::AID-BDM244>3.3.CO;2-YCrossRefGoogle Scholar
  29. Stanovich, K. E. (2001). How to think straight about psychology (6th ed.). Needham Heights, MA: Allyn & Bacon.Google Scholar
  30. Ubel, P. A., Jepson, C., & Baron, J. (2001). The inclusion of patient testimonials in decision aids: Effects on treatment choices. Medical Decision Making, 21, 60–68.CrossRefPubMedGoogle Scholar
  31. Zacks, R. T., Hasher, L., & Sanft, H. (1982). Automatic encoding of event frequency: Further findings. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8, 106–116. doi:10.1037/0278-7393.8.2.106CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2009

Authors and Affiliations

  • Natalie A. Obrecht
    • 1
  • Gretchen B. Chapman
    • 1
  • Rochel Gelman
    • 1
  1. 1.Psychology DepartmentRutgers UniversityPiscataway

Personalised recommendations