Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Memory & Cognition
  3. Article

Ratio and difference comparisons of expected reward in decision-making tasks

  • Published: December 2008
  • Volume 36, pages 1460–1469, (2008)
  • Cite this article
Download PDF
Memory & Cognition Aims and scope Submit manuscript
Ratio and difference comparisons of expected reward in decision-making tasks
Download PDF
  • Darrell A. Worthy1,
  • W. Todd Maddox1 &
  • Arthur B. Markman1 
  • 533 Accesses

  • 9 Citations

  • Explore all metrics

Abstract

Several models of choice compute the probability of selecting a given option by comparing the expected value (EV) of each option. However, a subtle but important difference between two common rules used to compute the action probability is often ignored. Specifically, one common rule type, the exponential rule, compares EVs via a difference operation, whereas another rule type, the power rule, uses a ratio operation. We tested the empirical validity of each rule type by having human participants perform a choice task in which either the difference or the ratio between the reward values was altered relative to a control condition. Results indicated that participants can compare expected rewards by either ratio or difference operations but that altering the ratio between EVs produces the most dramatic changes in behavior. We discuss implications for several related research fields.

Article PDF

Download to read the full article text

Similar content being viewed by others

Risky choice: Probability weighting explains independence axiom violations in monkeys

Article Open access 22 July 2022

Time-varying decision boundaries: insights from optimality analysis

Article Open access 20 July 2017

Probabilistic Choice Induced by Strength of Preference

Article 26 September 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Ashby, F. G., & Maddox, W. T. (1993). Relations between prototype, exemplar, and decision bound models of categorization. Journal of Mathematical Psychology, 37, 372–400.

    Article  Google Scholar 

  • Barron, G., & Erev, I. (2003). Small feedback-based decisions and their limited correspondence to description-based decisions. Journal of Behavioral Decision Making, 16, 215–233.

    Article  Google Scholar 

  • Birnbaum, M. H. (1978). Differences and ratios in psychological measurement. In N. J. Castellan & F. Restle (Eds.), Cognitive theory (Vol. 3, pp. 33–74). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Birnbaum, M. H., Anderson, C. J., & Hynan, L. G. (1989). Two operations for “ratios” and “differences” of distances on the mental map. Journal of Experimental Psychology: Human Perceptions & Performance, 15, 785–796.

    Article  Google Scholar 

  • Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimates of parameters. In D. S. Touretzky (Ed.), Advances in neural information processing systems 2 (pp. 211–217). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment, 14, 253–262.

    Article  PubMed  Google Scholar 

  • Corrado, G. S., Sugrue, L. P., Seung, S. H., & Newsome, W. T. (2005). Linear-nonlinear-Poisson models of primate choice dynamics. Journal of the Experimental Analysis of Behavior, 84, 581–617.

    Article  PubMed  Google Scholar 

  • Daw, N. D., & Doya, K. (2006). The computational neurobiology of learning and reward. Current Opinon in Neurobiology, 16, 199–204.

    Article  Google Scholar 

  • Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876–879.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology: Human Perception & Performance, 16, 626–641.

    Article  Google Scholar 

  • Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. Journal of Experimental Psychology: General, 127, 107–140.

    Article  Google Scholar 

  • Erickson, M. A., & Kruschke, J. K. (2002). Rule-based extrapolation in perceptual categorization. Psychonomic Bulletin & Review, 9, 160–168.

    Google Scholar 

  • Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272.

    Article  PubMed  Google Scholar 

  • Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choices. Psychological Science, 15, 534–539.

    Article  PubMed  Google Scholar 

  • Hinrichs, J. V., Yurko, D. S., & Hu, J.-M. (1981). Two-digit number comparison: Use of place information. Journal of Experimental Psychology: Human Perception & Performance, 7, 890–901.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrika, 47, 263–291.

    Article  Google Scholar 

  • Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.

    Article  PubMed  Google Scholar 

  • Lau, B., & Glimcher, P. W. (2005). Dynamic response-by-response models of matching behavior in rhesus monkeys. Journal of the Experimental Analysis of Behavior, 84, 555–579.

    Article  PubMed  Google Scholar 

  • Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309–332.

    Article  PubMed  Google Scholar 

  • Luce, R. D. (1959). Individual choice behavior. New York: Wiley.

    Google Scholar 

  • Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (pp. 103–189). New York: Wiley.

    Google Scholar 

  • Maddox, W. T., & Ashby, F. G. (1993). Comparing decision bound and exemplar models of categorization. Perception & Psychophysics, 53, 49–70.

    Google Scholar 

  • Medin, D. L., & Schaffer, M. M. (1978). A context theory of classification learning. Psychological Review, 85, 207–238.

    Article  Google Scholar 

  • Minsky, M., & Papert, S. (1968). Perceptrons. Cambridge, MA: MIT Press.

    Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520.

    Article  PubMed  Google Scholar 

  • Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.

    Article  Google Scholar 

  • Nosofsky, R. M., & Palmeri, T. J. (1998). A rule-plus-exception model for classifying objects in continuous-dimension spaces. Psychonomic Bulletin & Review, 5, 345–369.

    Google Scholar 

  • Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization. Journal of Experimental Psychology: Learning, Memory, & Cognition, 28, 924–940.

    Article  Google Scholar 

  • Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 482–487.

    Article  Google Scholar 

  • Roberts, M. E., & Goldstone, R. L. (2006). EPICURE: Spatial and knowledge limitations in group foraging. Adaptive Behavior, 14, 291–313.

    Article  Google Scholar 

  • Rodrigues, P. M., & Murre, J. M. (2007). Rules-plus-exception tasks: A problem for exemplar models? Psychonomic Bulletin & Review, 14, 640–646.

    Google Scholar 

  • Rumelhart, D. E., McClelland, J. L., & the PDP Research Group (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1. Foundations. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sakamoto, Y., Matsuka, T., & Love, B. C. (2004). Dimension-wide vs. exemplar-specific attention in category learning and recognition. In M. Lovett, C. Schunn, C. Lebiere, & P. Munro (Eds.), Proceedings of the 6th International Conference on Cognitive Modeling (pp. 261–266). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space. Psychometrika, 22, 325–345.

    Article  Google Scholar 

  • Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153–181.

    Article  PubMed  Google Scholar 

  • Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the representation of value in the parietal cortex. Science, 304, 1782–1787.

    Article  PubMed  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Weber, E. U., Shafir, S., & Blais, A.-R. (2004). Predicting risk sensitivity in humans and lower animals: Risk as variance or coefficient of variation. Psychological Review, 111, 430–445.

    Article  PubMed  Google Scholar 

  • Williams, R. J. (1988). On the use of back-propagation in associative reinforcement learning. In Proceedings of the IEEE International Conference on Neural Networks (pp. 263–270). San Diego: IEEE.

    Google Scholar 

  • Worthy, D. A., Maddox, W. T., & Markman, A. B. (2007). Regulatory fit effects in a choice task. Psychonomic Bulletin & Review, 14, 1125–1132.

    Google Scholar 

  • Yechiam, E., Busemeyer, J. R., Stout, J. C., & Bechara, A. (2005). Using cognitive models to map relations between neuropsychological disorders and human decision-making deficits. Psychological Science, 16, 973–978.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, University of Texas, 1 University Station A8000, 78712, Austin, TX

    Darrell A. Worthy, W. Todd Maddox & Arthur B. Markman

Authors
  1. Darrell A. Worthy
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. W. Todd Maddox
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Arthur B. Markman
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Darrell A. Worthy or W. Todd Maddox.

Additional information

This research was supported by AFOSR Grant FA9550-06-1-0204 and NIMH Grant MH077708 to W.T.M. and A.B.M., and by a supplement to NIMH Grant MH077708 to D.A.W.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worthy, D.A., Maddox, W.T. & Markman, A.B. Ratio and difference comparisons of expected reward in decision-making tasks. Memory & Cognition 36, 1460–1469 (2008). https://doi.org/10.3758/MC.36.8.1460

Download citation

  • Received: 09 May 2008

  • Accepted: 31 July 2008

  • Issue Date: December 2008

  • DOI: https://doi.org/10.3758/MC.36.8.1460

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Optimal Choice
  • Choice Task
  • Prospect Theory
  • Category Learning
  • Choice Rule
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

65.109.116.201

Not affiliated

Springer Nature

© 2025 Springer Nature