Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Memory & Cognition
  3. Article
Indirect assessment of visual working memory for simple and complex objects
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Distinct prioritization of visual working memory representations for search and for recall

14 January 2019

Blaire Dube & Naseem Al-Aidroos

Encoding strategies in self-initiated visual working memory

11 June 2018

Hagit Magen & Anat Berger-Mandelbaum

Multiple representations in visual working memory can simultaneously guide attention

18 June 2022

Lingxia Fan, Liuting Diao, … Xuemin Zhang

Prioritization in visual working memory enhances memory retention and speeds up processing in a comparison task

23 March 2020

Christian H. Poth

Object-based grouping benefits without integrated feature representations in visual working memory

18 October 2020

Siyi Chen, Anna Kocsis, … Markus Conci

The effects of search-irrelevant working memory content on visual search

03 January 2023

Marissa Ortiz Calleja & Adrian R. Willoughby

Strategic allocation of working memory resource

01 November 2018

Aspen H. Yoo, Zuzanna Klyszejko, … Wei Ji Ma

Irrelevant features of distractors in intervening visual search tasks cause active visual working memory interference – the more difficult the search task, the more interference it causes

11 May 2021

Zachary Lively, Gavin Jun Peng Ng, … Alejandro Lleras

The transition from feature to object: Storage unit in visual working memory depends on task difficulty

02 July 2019

Jiehui Qian, Ke Zhang, … Quan Lei

Download PDF
  • Published: September 2008

Indirect assessment of visual working memory for simple and complex objects

  • Tal Makovski1,2 &
  • Yuhong V. Jiang1,2 

Memory & Cognition volume 36, pages 1132–1143 (2008)Cite this article

  • 607 Accesses

  • 14 Citations

  • Metrics details

Abstract

Previous research has shown that visual search performance is modulated by the current contents in visual working memory (VWM), even when the contents of VWM are irrelevant to the search task. For example, visual search is faster when the target—rather than a distractor—is surrounded by a shape currently held in VWM. This study uses the modulation of visual search by VWM to investigate properties of VWM. Participants were asked to remember the color or the shape of novel polygons whose “goodness” of figure varied according to Garner’s (1962) rotation and reflection transformation principle. During the memory retention interval, participants searched for a tilted line among vertical lines embedded inside colored polygons. Search was faster when the target—rather than a distractor—was enclosed by the remembered polygons. The congruity effect diminished with increasing memory load and decreasing figure goodness. We conclude that congruity effects in visual search can indirectly assess VWM representation strength.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual shortterm memory is set both by visual information load and by number of objects. Psychological Science, 15, 106–111.

    Article  PubMed  Google Scholar 

  • Attneave, F. (1957). Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology, 53, 221–227.

    Article  PubMed  Google Scholar 

  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628.

    Article  PubMed  Google Scholar 

  • Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7, 66–80.

    Article  Google Scholar 

  • Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24, 87–185.

    Article  Google Scholar 

  • Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11, 467–473.

    Article  PubMed  Google Scholar 

  • Downing, P. E., & Dodds, C. M. (2004). Competition in visual working memory for control of search. Visual Cognition, 11, 689–703.

    Article  Google Scholar 

  • Droll, J. A., Hayhoe, M. M., Triesch, J., & Sullivan, B. T. (2005). Task demands control acquisition and storage of visual information. Journal of Experimental Psychology: Human Perception & Performance, 31, 1416–1438.

    Article  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual-search and stimulus similarity. Psychological Review, 96, 433–458.

    Article  PubMed  Google Scholar 

  • Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12, 1127–1133.

    Article  Google Scholar 

  • Garner, W. R. (1962). Uncertainty and structure as psychological concepts. New York: Wiley.

    Google Scholar 

  • Garner, W. R., & Sutliff, D. (1974). The effect of goodness on encoding time in visual pattern discrimination. Perception & Psychophysics, 16, 426–430.

    Article  Google Scholar 

  • Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 9, 188–194.

    Article  PubMed  Google Scholar 

  • Hochberg, J., & McAlister, E. (1953). A quantitative approach to figure “goodness.” Journal of Experimental Psychology, 46, 361–364.

    Article  PubMed  Google Scholar 

  • Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception & Performance, 29, 388–403.

    Article  Google Scholar 

  • Huang, L., & Pashler, H. (2007). Working memory and the guidance of visual attention: Consonance-driven orienting. Psychonomic Bulletin & Review, 14, 148–153.

    Article  Google Scholar 

  • Jiang, Y. V., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 683–702.

    Article  Google Scholar 

  • Jiang, Y. V., Shim, W. M., & Makovski, T. (in press). Visual working memory for line orientations and face identities. Perception & Psychophysics.

  • Keren, G., O’Hara, W. P., & Skelton, J. M. (1977). Levels of noise processing and attentional control. Journal of Experimental Psychology: Human Perception & Performance, 3, 653–664.

    Article  Google Scholar 

  • Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43, 149–164.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.

    Article  PubMed  Google Scholar 

  • Makovski, T., Shim, W. M., & Jiang, Y. V. (2006). Interference from filled delays on visual change detection. Journal of Vision, 6, 1459–1470.

    Article  PubMed  Google Scholar 

  • Makovski, T., Sussman, R. S., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 369–380.

    Article  Google Scholar 

  • Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception & Performance, 32, 1243–1265.

    Article  Google Scholar 

  • Olsson, H., & Poom, L. (2005). Visual memory needs categories. Proceedings of the National Academy of Sciences, 102, 8776–8780.

    Article  Google Scholar 

  • Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44, 369–378.

    Article  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283–290.

    Article  Google Scholar 

  • Rauschenberger, R., & Yantis, S. (2006). Perceptual encoding efficiency in visual search. Journal of Experimental Psychology: General, 135, 116–131.

    Article  Google Scholar 

  • Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245–277.

    Article  PubMed  Google Scholar 

  • Song, J. H., & Jiang, Y. V. (2006). Visual working memory for simple and complex features: An fMRI study. NeuroImage, 30, 963–972.

    Article  PubMed  Google Scholar 

  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception & Performance, 31, 248–261.

    Article  Google Scholar 

  • Soto, D., & Humphreys, G. W. (2007). Automatic guidance of visual attention from verbal working memory. Journal of Experimental Psychology: Human Perception & Performance, 33, 730–737.

    Article  Google Scholar 

  • Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46, 1010–1018.

    Article  PubMed  Google Scholar 

  • Vickery, T. J., King, L. W., & Jiang, Y. V. (2005). Setting up the target template in visual search. Journal of Vision, 5, 81–92.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32, 1436–1451.

    Article  Google Scholar 

  • Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120–1135.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception & Performance, 29, 483–502.

    Article  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11, 269–274.

    Article  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception & Performance, 33, 363–377.

    Article  Google Scholar 

  • Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12, 219–224.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Harvard University, Cambridge, Massachusetts

    Tal Makovski & Yuhong V. Jiang

  2. Department of Psychology, University of Minnesota, N218 75 East River Road, 55455, Minneapolis, MN

    Tal Makovski & Yuhong V. Jiang

Authors
  1. Tal Makovski
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yuhong V. Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tal Makovski.

Additional information

This research was supported in part by NSF Grant 0733764 and NIH Grant 071788.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Makovski, T., Jiang, Y.V. Indirect assessment of visual working memory for simple and complex objects. Memory & Cognition 36, 1132–1143 (2008). https://doi.org/10.3758/MC.36.6.1132

Download citation

  • Received: 17 August 2007

  • Accepted: 10 March 2008

  • Issue Date: September 2008

  • DOI: https://doi.org/10.3758/MC.36.6.1132

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Visual Search
  • Congruity Effect
  • Memory Load
  • Gruity Effect
  • Ruent Trial
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.94.236

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.