Advertisement

Memory & Cognition

, Volume 36, Issue 5, pp 957–967 | Cite as

Temporal isolation does not facilitate forward serial recall—or does it?

  • Sonja M. Geiger
  • Stephan LewandowskyEmail author
Article
  • 263 Downloads

Abstract

In numerous recent studies in short-term memory, it has been established that forward serial recall is unaffected by the temporal isolation of to-be-remembered items. These findings contradict the temporal distinctiveness view of memory, which expects items that are temporally isolated from their neighbors to be more distinct and hence remembered better. To date, isolation effects have only been found with tests that do not constrain output order, such as free recall. This article reports two experiments that, for the first time, report a temporal isolation effect with forward serial recall, using a running memory task in which the end of the list is unpredictable. The results suggest that people are able to encode and use temporal information in situations in which positional information is of little value. We conclude that the overall pattern of findings concerning temporal isolation supports models of short-term memory that postulate multidimensional representations of items.

Keywords

Serial Position Span Task List Length Isolation Effect Temporal Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bjork, R. A., & Whitten, W. B. (1974). Recency-sensitive retrieval processes in long-term free recall. Cognitive Psychology, 6, 173–189.CrossRefGoogle Scholar
  2. Blankenship, A. B. (1938). Memory span: A review of the literature. Psychological Bulletin, 35, 1–25.CrossRefGoogle Scholar
  3. Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113, 201–233.CrossRefPubMedGoogle Scholar
  4. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefPubMedGoogle Scholar
  5. Brown, G. D. A., Morin, C., & Lewandowsky, S. (2006). Evidence for time-based models of free recall. Psychonomic Bulletin & Review, 13, 717–723.Google Scholar
  6. Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114, 539–576.CrossRefPubMedGoogle Scholar
  7. Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107, 127–181.CrossRefPubMedGoogle Scholar
  8. Brown, G. D. A., Vousden, J. I., McCormack, T., & Hulme, C. (1999). The development of memory for serial order: A temporal contextual distinctiveness model. International Journal of Psychology, 34, 389–402.CrossRefGoogle Scholar
  9. Bunting, M., Cowan, N., & Saults, S. (2006). How does running memory span work? Quarterly Journal of Experimental Psychology, 59, 1691–1700.CrossRefGoogle Scholar
  10. Burgess, N., & Hitch, G. J. (1999). Memory for serial order. A network model of the phonological loop and its timing. Psychological Review, 106, 551–581.CrossRefGoogle Scholar
  11. Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory & Language, 55, 627–652.CrossRefGoogle Scholar
  12. Conway, A. R. A., Kane, M. J., Bunting, M., Hambrick, D. Z., Wilhelm, O., & Engle, R. (2005). Working memory span tasks: A methodological review and users guide. Psychonomic Bulletin & Review, 12, 769–786.Google Scholar
  13. Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100.CrossRefPubMedGoogle Scholar
  14. Farrell, S. (2008). Multiple roles for time in short-term memory: Evidence from serial recall of order and timing. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 128–145.CrossRefGoogle Scholar
  15. Farrell, S., & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall.Psychonomic Bulletin & Review, 9, 59–79.Google Scholar
  16. Farrell, S., & McLaughlin, K. (2007). Short-term recognition memory for serial order and timing. Memory & Cognition, 35, 1724–1734.Google Scholar
  17. Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.Google Scholar
  18. Glenberg, A. M., & Swanson, N. G. (1986). A temporal distinctiveness theory of recency and modality effects. Journal of Experimental Psychology: Learning, Memory, & Cognition, 12, 3–15.CrossRefGoogle Scholar
  19. Henson, R. N. A. (1998). Short-term memory for serial order: The start—end model. Cognitive Psychology, 36, 73–137.CrossRefPubMedGoogle Scholar
  20. Hockey, R. (1973). Rate of presentation in running memory and direct manipulation of input-processing strategies. Quarterly Journal of Experimental Psychology, 25, 104–111.CrossRefGoogle Scholar
  21. Lewandowsky, S., & Brown, G. D. A. (2005). Serial recall and presentation schedule: A micro-analysis of local distinctiveness. Memory, 13, 283–292.CrossRefPubMedGoogle Scholar
  22. Lewandowsky, S., Brown, G. D. A., Wright, T., & Nimmo, L. M. (2006). Timeless memory: Evidence against temporal distinctiveness models of short-term memory for serial order. Journal of Memory & Language, 54, 20–38.CrossRefGoogle Scholar
  23. Lewandowsky, S., Duncan, M., & Brown, G. D. A. (2004). Time does not cause forgetting in short-term memory serial recall. Psychonomic Bulletin & Review, 11, 771–790.Google Scholar
  24. Lewandowsky, S., & Farrell, S. (in press). Short-term memory: New data and a model. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 49). San Diego: Academic Press.Google Scholar
  25. Lewandowsky, S., & Murdock, B. B. (1989). Memory for serial order. Psychological Review, 96, 25–57.CrossRefGoogle Scholar
  26. Lewandowsky, S., Nimmo, L. M., & Brown, G. D. A. (2008). When temporal isolation benefits memory for serial order. Journal of Memory & Language, 58, 415–428.CrossRefGoogle Scholar
  27. Lewandowsky, S., Wright, T., & Brown, G. D. A. (2007). The interpretation of temporal isolation effects. In. N. Osaka, R. Logie, & M. D’Esposito (Eds.), The cognitive neuroscience of working memory: Behavioral and neural correlates (pp. 137–152). Oxford: Oxford University Press.Google Scholar
  28. Morris, N., & Jones, D. M. (1990). Memory updating in working memory: The role of the central executive. British Journal of Psychology, 81, 111–121.Google Scholar
  29. Murdock, B. B. (1960). The distinctiveness of stimuli. Psychological Review, 67, 16–31.CrossRefPubMedGoogle Scholar
  30. Murdock, B. B. (1995). Developing TODAM: Three modes for serialorder information. Memory & Cognition, 23, 631–645.Google Scholar
  31. Neath, I. (1993). Distinctiveness and serial position effects in recognition. Memory & Cognition, 21, 689–698.Google Scholar
  32. Neath, I., Brown, G. D. A., McCormack, T., Chater, N., & Freeman, R. (2006). Distinctiveness models of memory and absolute identification: Evidence for local, not global, effects. Quarterly Journal of Experimental Psychology, 59, 121–135.CrossRefGoogle Scholar
  33. Neath, I., & Crowder, R. G. (1990). Schedules of presentation and temporal distinctiveness in human memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 16, 316–327.CrossRefGoogle Scholar
  34. Neath, I., & Crowder, R. G. (1996). Distinctiveness and very shortterm serial position effects. Memory, 4, 225–242.CrossRefPubMedGoogle Scholar
  35. Nimmo, L. M., & Lewandowsky, S. (2005). From brief gaps to very long pauses: Temporal isolation does not benefit serial recall. Psychonomic Bulletin & Review, 12, 999–1004.Google Scholar
  36. Nimmo, L. M., & Lewandowsky, S. (2006). Distinctiveness revisited: Unpredictable temporal isolation does not benefit short-term serial recall of heard or seen events. Memory & Cognition, 34, 1368–1375.Google Scholar
  37. Page, M. P. A., & Norris, D. (1998). The primacy model: A new model of immediate serial recall. Psychological Review, 105, 761–781.CrossRefPubMedGoogle Scholar
  38. Parmentier, F. B. R., King, S., & Dennis, I. (2006). Local temporal distinctiveness does not benefit auditory verbal and spatial serial recall. Psychonomic Bulletin & Review, 13, 458–465.Google Scholar
  39. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefPubMedGoogle Scholar
  40. Pollack, I., Johnson, I. B., & Knaff, P. R. (1959). Running memory span. Journal of Experimental Psychology, 57, 137–146.CrossRefPubMedGoogle Scholar
  41. Postle, B. R. (2003). Context in verbal short-term memory. Memory & Cognition, 31, 1198–1207.Google Scholar
  42. Roennberg, J. (1980). Predictability as a task demand in single-trial free recall. Scandinavian Journal of Psychology, 21, 83–95.CrossRefGoogle Scholar
  43. Ruiz, M., Elosùa, M. R., & Lechuga, M. T. (2005). Old fashioned responses in an updating memory task. Quarterly Journal of Experimental Psychology, 58A, 887–908.Google Scholar
  44. von Restorff, H. (1933). Über die Wirkung von Bereichsbildungen im Spurenfeld. Psychologische Forschung, 18, 299–342.CrossRefGoogle Scholar
  45. Welte, J., & Laughery, K. (1971). Short-term memory: The effects of interim time distribution and recall procedure. Canadian Journal of Psychology, 25, 436–442.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  1. 1.School of PsychologyUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations