Mental imagery and chunks: Empirical and computational findings

Abstract

To investigate experts’ imagery in chess, players were required to recall briefly presented positions in which pieces were placed on the intersections between squares (intersection positions). Position types ranged from game positions to positions in which both the piece distribution and the location were randomized. Simulations were run with the CHREST model (Gobet & Simon, 2000). The simulations assumed that pieces had to be centered back, one by one, to the middle of the squares in the mind’s eye before chunks could be recognized. Consistent with CHREST’s predictions, chess players (N =36), ranging from weak amateurs to grandmasters, exhibited much poorer recall for intersection positions than for standard positions (pieces placed on the centers of the squares). For the intersection positions, the skill difference in recall was larger for game positions than for the randomized positions. The participants recalled bishops better than they recalled knights, suggesting that Stroop-like interference impairs recall of the latter. The data supported both the time parameter in CHREST for shifting pieces in the mind’s eye (125 msec per piece) and the seriality assumption. In general, the study reinforces the plausibility of CHREST as a model of cognition.

References

  1. Attneave, F., & Curlee, T. E. (1983). Locational representation in imagery: A moving spot task. Journal of Experimental Psychology: Human Perception & Performance, 9, 20–30.

    Article  Google Scholar 

  2. Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328.

    Google Scholar 

  3. Bachmann, T., & Oit, M. (1992). Stroop-like interference in chess players’ imagery: An unexplored possibility to be revealed by the adapted moving-spot task. Psychological Research, 54, 27–31.

    Article  Google Scholar 

  4. Baddeley, A. (1986). Working memory. Oxford: Oxford University Press, Clarendon Press.

    Google Scholar 

  5. Binet, A. (1981). Psychologie des grands calculateurs et joueurs d’échecs [The psychology of great calculators and chess players]. Paris: Slatkine. (Original work published 1894)

    Google Scholar 

  6. Campitelli, G., & Gobet, F. (2005). The mind’s eye in blindfold chess. European Journal of Cognitive Psychology, 17, 23–45.

    Article  Google Scholar 

  7. Charness, N. (1981a). Aging and skilled problem solving. Journal of Experimental Psychology: General, 110, 21–38.

    Article  Google Scholar 

  8. Charness, N. (1981b). Search in chess: Age and skill differences. Journal of Experimental Psychology: Human Perception & Performance, 7, 467–476.

    Article  Google Scholar 

  9. Chase, W. G., & Simon, H. A. (1973a). The mind’s eye in chess. In W. G. Chase (Ed.), Visual information processing (pp. 215–281). New York: Academic Press.

    Google Scholar 

  10. Chase, W. G., & Simon, H. A. (1973b). Perception in chess. Cognitive Psychology, 4, 55–81.

    Article  Google Scholar 

  11. Church, R. M., & Church, K. W. (1977). Plans, goals, and search strategies for the selection of a move in chess. In P. W. Frey (Ed.), Chess skill in man and machine (pp. 131–156). New York: Springer.

    Google Scholar 

  12. de Groot, A. D. (1978). Thought and choice in chess. The Hague: Mouton. (Original work published 1946)

    Google Scholar 

  13. de Groot, A. D., & Gobet, F. (1996). Perception and memory in chess: Heuristics of the professional eye. Assen: Van Gorcum.

    Google Scholar 

  14. Ekstrom, R. B., French, J. W., Harman, H. H., & Derman, D. (1976). Kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  15. Elo, A. (1978). The rating of chessplayers, past and present. New York: Arco.

    Google Scholar 

  16. Ferrari, V., Didierjean, A., & Marmèche, E. (2006). Dynamic perception in chess. Quarterly Journal of Experimental Psychology, 59, 397–410.

    Article  Google Scholar 

  17. Freudenthal, D., Pine, J. M., & Gobet, F. (2005). Resolving ambiguities in the extraction of syntactic categories through chunking. Cognitive Systems Research, 6, 17–25.

    Article  Google Scholar 

  18. Freudenthal, D., Pine, J. M., & Gobet, F. (2006). Modeling the development of children’s use of optional infinitives in Dutch and English using MOSAIC. Cognitive Science, 30, 277–310.

    Article  Google Scholar 

  19. Gobet, F. (1997). A pattern-recognition theory of search in expert problem solving. Thinking & Reasoning, 3, 291–313.

    Article  Google Scholar 

  20. Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four ... or is it two? Memory, 12, 732–747.

    Article  PubMed  Google Scholar 

  21. Gobet, F., & Jackson, S. (2002). In search of templates. Cognitive Systems Research, 3, 35–44.

    Article  Google Scholar 

  22. Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C.-H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243.

    Article  PubMed  Google Scholar 

  23. Gobet, F., & Simon, H. A. (1996a). Recall of random and distorted chess positions: Implications for the theory of expertise. Memory & Cognition, 24, 493–503.

    Article  Google Scholar 

  24. Gobet, F., & Simon, H. A. (1996b). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31, 1–40.

    Article  PubMed  Google Scholar 

  25. Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6, 225–255.

    Article  PubMed  Google Scholar 

  26. Gobet, F., & Simon, H. A. (2000). Five seconds or sixty? Presentation time in expert memory. Cognitive Science, 24, 651–682.

    Article  Google Scholar 

  27. Gobet, F., & Waters, A. J. (2003). The role of constraints in expert memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29, 1082–1094.

    Article  Google Scholar 

  28. Gruber, H. (1991). Qualitative Aspekte von Expertise im Schach [Qualitative aspects of expertise in chess]. Aachen: Feenschach.

    Google Scholar 

  29. Holding, D. H. (1985). The psychology of chess skill. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  30. Jones, G., Gobet, F., & Pine, J. M. (2005). Modelling vocabulary acquisition: An explanation of the link between the phonological loop and long-term memory. Journal of Artificial Intelligence & Simulation of Behaviour, 1, 509–522.

    Google Scholar 

  31. Kalakoski, V. (2006). Constructing skilled images (Research Rep. 35). Helsinki: University of Helsinki.

    Google Scholar 

  32. Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press, Bradford Books.

    Google Scholar 

  33. Kosslyn, S. M., Cave, C. B., Provost, D. A., & von Gierke, S. M. (1988). Sequential processes in image generation. Cognitive Psychology, 20, 319–343.

    Article  PubMed  Google Scholar 

  34. Lane, P. C. R., Cheng, P. C.-H., & Gobet, F. (2000). CHREST1: Investigating how humans learn to solve problems using diagrams. Artificial Intelligence & Simulation of Behaviour Quarterly, 103, 24–30.

    Google Scholar 

  35. Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

    Article  PubMed  Google Scholar 

  36. Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Article  Google Scholar 

  37. Logie, R. H. (1986). Visuospatial processing in working memory. Quarterly Journal of Experimental Psychology, 38A, 229–247.

    Google Scholar 

  38. Milojkovic, J. D. (1982). Chess imagery in novice and master. Journal of Mental Imagery, 6, 125–144.

    Google Scholar 

  39. Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  40. Paige, J. M., & Simon, H. A. (1966). Cognitive processes in solving algebra word problems. In B. Kleinmuntz (Ed.), Problem solving: Research, method, and theory (pp. 51–119). New York: Wiley.

    Google Scholar 

  41. Richman, H. B., Staszewski, J. J., & Simon, H. A. (1995). Simulation of expert memory using EPAM IV. Psychological Review, 102, 305–330.

    Article  PubMed  Google Scholar 

  42. Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral & Brain Sciences, 26, 709–728.

    Google Scholar 

  43. Saariluoma, P. (1994). Location coding in chess. Quarterly Journal of Experimental Psychology, 47A, 607–630.

    Google Scholar 

  44. Saariluoma, P. (1995). Chess players’ thinking: A cognitive psychological approach. London: Routledge.

    Google Scholar 

  45. Saariluoma, P., & Kalakoski, V. (1997). Skilled imagery and long-term working memory. American Journal of Psychology, 110, 177–201.

    Article  Google Scholar 

  46. Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.

    Google Scholar 

  47. Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.

    Google Scholar 

  48. Simon, H. A. (1978). On the forms of mental representation. In C. W. Savage (Ed.), Perception and cognition: Issues in the foundations of psychology (pp. 3–18). Minneapolis: University of Minnesota Press.

    Google Scholar 

  49. Simon, H. A., & Gilmartin, K. J. (1973). A simulation of memory for chess positions. Cognitive Psychology, 5, 29–46.

    Article  Google Scholar 

  50. Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A computational model of multiple representations. Cognitive Science, 21, 305–350.

    Article  Google Scholar 

  51. Vicente, K. J., & Wang, J. H. (1998). An ecological theory of expertise effects in memory recall. Psychological Review, 105, 33–57.

    Article  PubMed  Google Scholar 

  52. Waghorn, K. (1988). Chess players’ use of task-specific processes in a perceptual classification task. Unpublished honors thesis, University of Waterloo.

  53. Waters, A. J., Gobet, F., & Leyden, G. (2002). Visuospatial abilities of chess players. British Journal of Psychology, 93, 557–565.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernand Gobet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waters, A.J., Gobet, F. Mental imagery and chunks: Empirical and computational findings. Memory & Cognition 36, 505–517 (2008). https://doi.org/10.3758/MC.36.3.505

Download citation

Keywords

  • Visual Memor
  • Position Type
  • Intersection Position
  • Chess Player
  • Game Position