Skip to main content

Neural correlates of arithmetic calculation strategies

Abstract

Recent research into math cognition has identified areas of the brain that are involved in number processing (Dehaene, Piazza, Pinel, & Cohen, 2003) and complex problem solving (Anderson, 2007). Much of this research assumes that participants use a single strategy; yet, behavioral research finds that people use a variety of strategies (LeFevre et al., 1996; Siegler, 1987; Siegler & Lemaire, 1997). In the present study, we examined cortical activation as a function of two different calculation strategies for mentally solving multidigit multiplication problems. The school strategy, equivalent to long multiplication, involves working from right to left. The expert strategy, used by “lightning” mental calculators (Staszewski, 1988), proceeds from left to right. The two strategies require essentially the same calculations, but have different working memory demands (the school strategy incurs greater demands). The school strategy produced significantly greater early activity in areas involved in attentional aspects of number processing (posterior superior parietal lobule, PSPL) and mental representation (posterior parietal cortex, PPC), but not in a numerical magnitude area (horizontal intraparietal sulcus, HIPS) or a semantic memory retrieval area (lateral inferior prefrontal cortex, LIPFC). An ACT-R model of the task successfully predicted BOLD responses in PPC and LIPFC, as well as in PSPL and HIPS.

References

  1. Alivisatos, B., & Petrides, M. (1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35, 111–118.

    PubMed  Article  Google Scholar 

  2. Anderson, J. R. (2007). Using brain imaging to guide the development of a cognitive architecture. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 49–62). New York: Oxford University Press.

    Google Scholar 

  3. Anderson, J. R., Carter, C. S., Fincham, J. M., Qin, Y., Ravizza, S. M., & Rosenberg-Lee, M. (2008). Using f MRI to test models of complex cognition. Cognitive Science, 32, 1323–1348. doi:10.1080/03640210802451588

    Article  Google Scholar 

  4. Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules in the acquisition of a cognitive skill. Journal of Experimental Psychology: Learning, Memory, & Cognition, 23, 932–945. doi:10.1037/0278-7393.23.4.932

    Article  Google Scholar 

  5. Anderson, J. R., Qin, Y., Sohn, M.-H., & Stenger, V. A. (2003). An information-processing model of the BOLD response in symbol manipulation tasks. Psychonomic Bulletin & Review, 10, 241–261.

    Article  Google Scholar 

  6. Anderson, J. R., Qin, Y., Stenger, V. A., & Carter, C. (2004). The relationship of three cortical regions to an information-processing model. Journal of Cognitive Neuroscience, 16, 637–653.

    PubMed  Article  Google Scholar 

  7. Buckner, R. L., Kelley, W. M., & Petersen, S. E. (1999). Frontal cortex contributes to human memory formation. Nature Neuroscience, 2, 311–314.

    PubMed  Article  Google Scholar 

  8. Cabeza, R., Dolcos, F., Graham, R., & Nyberg, L. (2002). Similarities and differences in the neural correlates of episodic memory retrieval and working memory. NeuroImage, 16, 317–330.

    PubMed  Article  Google Scholar 

  9. Carpenter, P. A., Just, M. A., Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded functional activation in the visuospatial system with the amount of task demand. Journal of Cognitive Neuroscience, 11, 9–24.

    PubMed  Article  Google Scholar 

  10. Carroll, W. M., & Isaacs, A. (2003). Achievement of students using the University of Chicago School Mathematics Project’s Everyday Mathematics. In S. L. Senk & D. R. Thompson (Eds), Standardsbased school mathematics curricula: What are they? What do students learn? (pp. 79–108). Mahwah, NJ: Erlbaum.

    Google Scholar 

  11. Chochon, F., Cohen, L., van de Moortele, P., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630.

    PubMed  Article  Google Scholar 

  12. Cipolotti, L., Warrington, E. K., & Butterworth, B. (1995). Selective impairment in manipulating Arabic numerals. Cortex, 31, 73–86.

    PubMed  Google Scholar 

  13. Clark, D., & Wagner, A. D. (2003). Assembling and encoding word representations: fMRI subsequent memory effects implicate a role for phonological control. Neuropsychologia, 41, 304–317.

    PubMed  Article  Google Scholar 

  14. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292–297.

    PubMed  Article  Google Scholar 

  15. Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. NMR in Biomedicine, 10, 171–178.

    PubMed  Article  Google Scholar 

  16. Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157–163.

    PubMed  Article  Google Scholar 

  17. Danker, J. F., & Anderson, J. R. (2007). The roles of prefrontal and posterior parietal cortex in algebra problem solving: A case of using cognitive modeling to inform neuroimaging data. NeuroImage, 35, 1365–1377. doi:10.1016/j.neuroimage.2007.01.032

    PubMed  Article  Google Scholar 

  18. Davachi, L., Maril, A., & Wagner, A. D. (2001). When keeping in mind supports later bringing to mind: Neural markers of phonological rehearsal predict subsequent remembering. Journal of Cognitive Neuroscience, 13, 1059–1070.

    PubMed  Article  Google Scholar 

  19. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219–250.

    PubMed  Article  Google Scholar 

  20. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506. doi:10.1080/02643290244000239

    PubMed  Article  Google Scholar 

  21. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brainimaging evidence. Science, 284, 970–974.

    PubMed  Article  Google Scholar 

  22. Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Locky, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic—An fMRI study. Cognitive Brain Research, 18, 76–88.

    PubMed  Article  Google Scholar 

  23. Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., et al. (2005). Learning by strategies and learning by drill—Evidence from an fMRI study. Neuro-Image, 25, 838–849.

    PubMed  Google Scholar 

  24. Dobbins, I. G., & Wagner, A. D. (2005). Domain-general and domainsensitive prefrontal mechanisms for recollecting events and detecting novelty. Cerebral Cortex, 15, 1768–1778. doi:10.1093/cercor/bhi054

    PubMed  Article  Google Scholar 

  25. Glover, G. H. (1999). Deconvolution of impulse response in eventrelated BOLD fMRI. NeuroImage, 9, 416–429.

    PubMed  Article  Google Scholar 

  26. Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuro Image, 38, 346–356. doi:10.1016/j.neuroimage.2007.07.041

    PubMed  Google Scholar 

  27. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100, 253–258. doi:10.1073/pnas.0135058100

    Article  Google Scholar 

  28. Jackson, M., & Warrington, E. K. (1986). Arithmetic skill in patients with unilateral cerebral-lesions. Cortex, 22, 611–620.

    PubMed  Google Scholar 

  29. Kahn, H. J., & Whitaker, H. A. (1991). Acalculia—An historical review of localization. Brain & Cognition, 17, 102–115.

    Article  Google Scholar 

  30. Kwong, T. E., & Varnhagen, C. K. (2005). Strategy development and learning to spell new words: Generalization of a process. Developmental Psychology, 41, 148–159. doi:10.1037/0012-1649.41.1.148

    PubMed  Article  Google Scholar 

  31. Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional magnetic imaging study with a case of selective acalculia. Annals of Neurology, 48, 657–661.

    PubMed  Article  Google Scholar 

  32. LeFevre, J.-A., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of singledigit multiplication problems. Journal of Experimental Psychology: General, 125, 284–306.

    Article  Google Scholar 

  33. Lovett, M. C., Daily, L. Z., & Reder, L. M. (2001). A source activation theory of working memory: Cross-task prediction of performance in ACT-R. Cognitive Systems Research, 1, 99–118.

    Article  Google Scholar 

  34. Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating prefrontal and parietal cortex activation during arithmetic processing. NeuroImage, 12, 357–365.

    PubMed  Article  Google Scholar 

  35. Naus, M. J., & Ornstein, P. A. (1983). Development of memory strategies: Analysis, questions, and issues. In M. T. H. Chi (Ed.), Trends in memory development research. New York: Karger.

    Google Scholar 

  36. Pesenti, M. (2005). Calculation abilities in expert calculators. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 413–430). New York: Psychology Press.

    Google Scholar 

  37. Qin, Y., Carter, C. S., Silk, E. M., Stenger, V. A., Fissell, K., Goode, A., & Anderson, J. R. (2004). The change of the brain activation patterns as children learn algebra equation solving. Proceedings of the National Academy of Sciences, 101, 5686–5691. doi:10.1073/pnas.0401227101

    Article  Google Scholar 

  38. Qin, Y., Sohn, M. H., Anderson, J. R., Stenger, V. A., Fissell, K., Goode, A., et al. (2003). Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task. Proceedings of the National Academy of Sciences, 100, 4951–4956. doi:10.1073/pnas.0431053100

    Article  Google Scholar 

  39. Raftery, A. E. (1995). Bayesian model selection in social research. In P. V. Marsden (Ed.), Sociological methodology (Vol. 25, pp. 111–63). Boston: Blackwell.

    Google Scholar 

  40. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682.

    Article  Google Scholar 

  41. Reichle, E. D., Carpenter, P. A., & Just, M. A. (2000). The neural bases of strategy and skill in sentence-picture verification. Cognitive Psychology, 40, 261–295.

    PubMed  Article  Google Scholar 

  42. Rogers, W. A., Hertzog, C., & Fisk, A. D. (2000). An individual differences analysis of ability and strategy influences: Age- related differences in associative learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 359–394. doi:10.1037/0278-7393.26.2.359

    Article  Google Scholar 

  43. Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition. Journal of Experimental Psychology: General, 116, 250–264.

    Article  Google Scholar 

  44. Siegler, R. S., & Alibali, M. W. (2005). Children’s thinking (4th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  45. Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology: General, 126, 22.

    Article  Google Scholar 

  46. Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do children know what to do? In C. Sophian (Ed.), The origins of cognitive skills (pp. 229–293). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  47. Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and languagerelated areas in the human parietal lobe. Neuron, 33, 475–487.

    PubMed  Article  Google Scholar 

  48. Sohn, M.-H., Goode, A., Koedinger, K. R., Stenger, V. A., Fissell, K., Carter, C. S., & Anderson, J. R. (2004). Behavioral equivalence, but not neural equivalence—Neural evidence of alternative strategies in mathematical thinking. Nature Neuroscience, 7, 1193–1194. doi:10.1038/nn1337

    PubMed  Article  Google Scholar 

  49. Sohn, M.-H., Goode, A., Stenger, V. A., Jung, K.-J., Carter, C., & Anderson, J. R. (2005). An information-processing model of three cortical regions: Evidence in episodic memory retrieval. NeuroImage, 25, 21–33. doi:10.1016/j.neuroimage.2004.11.001

    PubMed  Article  Google Scholar 

  50. Staszewski, J. J. (1988). Skilled memory and expert mental calculation. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 71–128). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  51. van Harskamp, N. J., Rudge, P., & Cipolotti, L. (2002). Are multiplication facts implemented by the left supramarginal and angular gyri? Neuropsychologia, 40, 1786–1793.

    PubMed  Article  Google Scholar 

  52. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804.

    Article  Google Scholar 

  53. Warrington, E. K. (1982). The fractionation of arithmetical skills—A single case-study. Quarterly Journal of Experimental Psy chology: Human Experimental Psychology, 34A, 31–51. doi:10.1080/14640748208400856

    Google Scholar 

  54. Whalen, J., McCloskey, M., Lesser, R. P., & Gordon, B. (1997). Localizing arithmetic processes in the brain: Evidence from a transient deficit during cortical stimulation. Journal of Cognitive Neuroscience, 9, 409–417.

    Article  Google Scholar 

  55. Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23, 747–764.

    PubMed  Article  Google Scholar 

  56. Woods, R. P., Cherry, S. R., & Mazziotta, J. C. (1992). Rapid automated algorithm for aligning and reslicing PET images. Journal of Computer Assisted Tomography, 16, 620–633.

    PubMed  Article  Google Scholar 

  57. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998). Automated image registration: I. General methods of intrasubject, intramodality variation. Journal of Computer Assisted Tomography, 22, 139–152.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miriam Rosenberg-Lee.

Additional information

The present work was supported by Grant REC-0087396 from NSF to J.R.A., and a National Science and Engineering Research Council postgraduate scholarship to M.R.-L.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosenberg-Lee, M., Lovett, M.C. & Anderson, J.R. Neural correlates of arithmetic calculation strategies. Cognitive, Affective, & Behavioral Neuroscience 9, 270–285 (2009). https://doi.org/10.3758/CABN.9.3.270

Download citation

Keywords

  • Posterior Parietal Cortex
  • Cognitive Architecture
  • Bold Response
  • Angular Gyrus
  • Scanning Session