The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making

Abstract

Damage to the ventromedial frontal cortex (VMFC) in humans is associated with deficits in decision making. Decision making, however, often happens while people are interacting with others, where it is important to take the social consequences of a course of action into account. It is well known that VMFC lesions also lead to marked alterations in patients’ emotions and ability to interact socially; however, it has not been clear which parts of the VMFC are critical for these changes. Recently, there has been considerable interest in the role of the VMFC in choice behavior during interpersonal exchanges. Here, we highlight recent research that suggests that two areas within or adjacent to the VMFC, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), may play distinct but complementary roles in mediating normal patterns of emotion and social behavior. Converging lines of evidence from human, macaque, and rat studies now suggest that the OFC may be more specialized for simple emotional responses, such as fear and aggression, through its role in representing primary reinforcement or punishment. By contrast, the ACC may play a distinct role in more complex aspects of emotion, such as social interaction, by virtue of its connections with the discrete parts of the temporal lobe and subcortical structures that control autonomic responses.

References

  1. Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11, 231–239.

    PubMed  Google Scholar 

  2. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. [R.] (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.

    PubMed  Google Scholar 

  3. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th ed., text revision). Washington DC: American Psychiatric Association.

    Google Scholar 

  4. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.

    PubMed  Google Scholar 

  5. Apperly, I. A., Samson, D., Chiavarino, C., & Humphreys, G. W. (2004). Frontal and temporo-parietal lobe contributions to theory of mind: neuropsychological evidence from a false-belief task with reduced language and executive demands. Journal of Cognitive Neuroscience, 16, 1773–1784.

    PubMed  Google Scholar 

  6. Arana, F. S., Parkinson, J. A., Hinton, E., Holland, A. J., Owen, A. M., & Roberts, A. C. (2003). Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. Journal of Neuroscience, 23, 9632–9638.

    PubMed  Google Scholar 

  7. Bannerman, D. M., Deacon, R. M. J., Offen, S., Friswell, J., Grubb, M., & Rawlins, J. N. P. (2002). Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behavioral Neuroscience, 116, 884–901.

    PubMed  Google Scholar 

  8. Barbas, H., Ghashghaei, H., Dombrowski, S. M., & Rempel-Clower, N. L. (1999). Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. Journal of Comparative Neurology, 410, 343–367.

    PubMed  Google Scholar 

  9. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20, 4311–4319.

    PubMed  Google Scholar 

  10. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.

    PubMed  Google Scholar 

  11. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.

    PubMed  Google Scholar 

  12. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.

    PubMed  Google Scholar 

  13. Beer, J. S., Heerey, E. A., Keltner, D., Scabini, D., & Knight, R. T. (2003). The regulatory function of self-conscious emotion: insights from patients with orbitofrontal damage. Journal of Personality & Social Psychology, 85, 594–604.

    Google Scholar 

  14. Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18, 871–879.

    PubMed  Google Scholar 

  15. Belin, P. (2006). Voice processing in human and non-human primates. Philosophical Transactions of the Royal Society B, 361, 2091–2107.

    Google Scholar 

  16. Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games & Economic Behavior, 10, 122–142.

    Google Scholar 

  17. Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 369–384.

    PubMed  Google Scholar 

  18. Butter, C. M., Snyder, D. R., & McDonald, J. A. (1970). Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys. Journal of Comparative & Physiological Psychology, 72, 132–144.

    Google Scholar 

  19. Camille, N., Coricelli, G., Sallet, J., Pradat-Diehl, P., Duhamel, J.-R., & Sirigu, A. (2004). The involvement of the orbitofrontal cortex in the experience of regret. Science, 304, 1167–1170.

    PubMed  Google Scholar 

  20. Carmichael, S. T., & Price, J. L. (1995a). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology, 363, 615–641.

    PubMed  Google Scholar 

  21. Carmichael, S. T., & Price, J. L. (1995b). Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 363, 642–664.

    PubMed  Google Scholar 

  22. Carmichael, S. T., & Price, J. L. (1996). Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 371, 179–207.

    PubMed  Google Scholar 

  23. Castelli, F., Frith, C. [D.], Happé, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 1839–1849.

    PubMed  Google Scholar 

  24. Chiu, P. H., Kayali, M. A., Kishida, K. T., Tomlin, D., Klinger, L. G., Klinger, M. R., & Montague, P. R. (2008). Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron, 57, 463–473.

    PubMed  Google Scholar 

  25. Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences, 104, 7652–7657.

    Google Scholar 

  26. Croxson, P. L., Johansen-Berg, H., Behrens, T. E. J., Robson, M. D., Pinsk, M. A., Gross, C. G., et al. (2005). Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. Journal of Neuroscience, 25, 8854–8866.

    PubMed  Google Scholar 

  27. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.

    PubMed  Google Scholar 

  28. Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41, 81–94.

    PubMed  Google Scholar 

  29. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science, 264, 1102–1105.

    PubMed  Google Scholar 

  30. Deaner, R. O., Khera, A. V., & Platt, M. L. (2005). Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Current Biology, 15, 543–548.

    PubMed  Google Scholar 

  31. de Bruin, J. P., van Oyen, H. G., & Van de Poll, N. (1983). Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behavioural Brain Research, 10, 209–232.

    PubMed  Google Scholar 

  32. Drevets, W. C., Price, J. L., Simpson, J. R., Jr., Todd, R. D., Reich, T., Vannier, M., & Raichle, M. E. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824–827.

    PubMed  Google Scholar 

  33. Emery, N. J., Capitanio, J. P., Mason, W. A., Machado, C. J., Mendoza, S. P., & Amaral, D. G. (2001). The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115, 515–544.

    PubMed  Google Scholar 

  34. Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology, 35, 1731–1741.

    PubMed  Google Scholar 

  35. Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain, 126, 1830–1837.

    PubMed  Google Scholar 

  36. Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cerebral Cortex, 17, 2669–2674.

    PubMed  Google Scholar 

  37. Frith, C. D., & Frith, U. (1999). Interacting minds—a biological basis. Science, 286, 1692–1695.

    PubMed  Google Scholar 

  38. Frith, U. (2001). Mind blindness and the brain in autism. Neuron, 32, 969–979.

    PubMed  Google Scholar 

  39. Galaburda, A. M., & Pandya, D. N. (1983). The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. Journal of Comparative Neurology, 221, 169–184.

    PubMed  Google Scholar 

  40. Gallagher, H. L., Jack, A. I., Roepstorff, A., & Frith, C. D. (2002). Imaging the intentional stance in a competitive game. NeuroImage, 16, 814–821.

    PubMed  Google Scholar 

  41. Ghazanfar, A. A., Maier, J. X., Hoffman, K. L., & Logothetis, N. K. (2005). Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. Journal of Neuroscience, 25, 5004–5012.

    PubMed  Google Scholar 

  42. Ghazanfar, A. A., Turesson, H. K., Maier, J. X., van Dinther, R., Patterson, R. D., & Logothetis, N. K. (2007). Vocal-tract resonances as indexical cues in rhesus monkeys. Current Biology, 17, 425–430.

    PubMed  Google Scholar 

  43. Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M., & Amaral, D. G. (2007). Neural responses to facial expression and face identity in the monkey amygdala. Journal of Neurophysiology, 97, 1671–1683.

    PubMed  Google Scholar 

  44. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology, 46, 1231–1238.

    PubMed  Google Scholar 

  45. Haber, S. N., Kim, K.-S., Mailly, P., & Calzavara, R. (2006). Rewardrelated cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. Journal of Neuroscience, 26, 8368–8376.

    PubMed  Google Scholar 

  46. Hadland, K. A., Rushworth, M. F. S., Gaffan, D., & Passingham, R. E. (2003). The effect of cingulate lesions on social behaviour and emotion. Neuropsychologia, 41, 919–931.

    PubMed  Google Scholar 

  47. Harlow, J. (1848). Passage of an iron rod through the head. Boston Medical & Surgical Journal, 39, 389–393.

    Google Scholar 

  48. Harlow, J. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2, 327–347.

    Google Scholar 

  49. Heberlein, A. S., Padon, A. A., Gillihan, S. J., Farah, M. J., & Fellows, L. K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20, 721–733.

    PubMed  Google Scholar 

  50. Hoffman, K. L., Gothard, K. M., Schmid, M. C., & Logothetis, N. K. (2007). Facial-expression and gaze-selective responses in the monkey amygdala. Current Biology, 17, 766–772.

    PubMed  Google Scholar 

  51. Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., O’Doherty, J., Bullock, P. R., & Polkey, C. E. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126, 1691–1712.

    PubMed  Google Scholar 

  52. Hornak, J., O’Doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R., & Polkey, C. E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16, 463–478.

    PubMed  Google Scholar 

  53. Hornak, J., Rolls, E. T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34, 247–261.

    PubMed  Google Scholar 

  54. Iversen, S. D., & Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research, 11, 376–386.

    Google Scholar 

  55. Izquierdo, A., Suda, R. K., & Murray, E. A. (2004). Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. Journal of Neuroscience, 24, 7540–7548.

    PubMed  Google Scholar 

  56. Izquierdo, A., Suda, R. K., & Murray, E. A. (2005). Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. Journal of Neuroscience, 25, 8534–8542.

    PubMed  Google Scholar 

  57. Johansen-Berg, H., Gutman, D. A., Behrens, T. E. J., Matthews, P. M., Rushworth, M. F. S., Katz, E., et al. (2008). Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cerebral Cortex, 18, 1374–1383.

    PubMed  Google Scholar 

  58. Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: resting functional abnormalities in autism. Proceedings of the National Academy of Sciences, 103, 8275–8280.

    Google Scholar 

  59. King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: reputation and trust in a two-person economic exchange. Science, 308, 78–83.

    PubMed  Google Scholar 

  60. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with eventrelated fMRI. NeuroReport, 12, 3683–3687.

    PubMed  Google Scholar 

  61. Koenigs, M., & Tranel, D. (2007). Irrational economic decisionmaking after ventromedial prefrontal damage: evidence from the Ultimatum Game. Journal of Neuroscience, 27, 951–956.

    PubMed  Google Scholar 

  62. Kolb, B. (1974). Social behavior of rats with chronic prefrontal lesions. Journal of Comparative & Physiological Psychology, 87, 466–474.

    Google Scholar 

  63. Kondo, H., Saleem, K. S., & Price, J. L. (2003). Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. Journal of Comparative Neurology, 465, 499–523.

    PubMed  Google Scholar 

  64. Kondo, H., Saleem, K. S., & Price, J. L. (2005). Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. Journal of Comparative Neurology, 493, 479–509.

    PubMed  Google Scholar 

  65. Lacroix, L., Spinelli, S., Heidbreder, C. A., & Feldon, J. (2000). Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behavioral Neuroscience, 114, 1119–1130.

    PubMed  Google Scholar 

  66. Laplane, D., Degos, J. D., Baulac, M., & Gray, F. (1981). Bilateral infarction of the anterior cingulate gyri and of the fornices: Report of a case. Journal of the Neurological Sciences, 51, 289–300.

    PubMed  Google Scholar 

  67. Machado, C. J., & Bachevalier, J. (2006). The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 120, 761–786.

    PubMed  Google Scholar 

  68. Machado, C. J., & Bachevalier, J. (2007). The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. European Journal of Neuroscience, 25, 2885–2904.

    PubMed  Google Scholar 

  69. Macmillan, M. (2002). An odd kind of fame: Stories of Phineas Gage. Cambridge, MA: MIT Press.

    Google Scholar 

  70. Maia, T. V., & McClelland, J. L. (2004). A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proceedings of the National Academy of Sciences, 101, 16075–16080.

    Google Scholar 

  71. Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651–660.

    PubMed  Google Scholar 

  72. McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27, 5796–5804.

    PubMed  Google Scholar 

  73. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.

    PubMed  Google Scholar 

  74. McEnaney, K. W., & Butter, C. M. (1969). Perseveration of responding and nonresponding in monkeys with orbital frontal ablations. Journal of Comparative & Physiological Psychology, 68, 558–561.

    Google Scholar 

  75. McHugh, S. B., Deacon, R. M. J., Rawlins, J. N. P., & Bannerman, D. M. (2004). Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behavioral Neuroscience, 118, 63–78.

    PubMed  Google Scholar 

  76. Meunier, M., Bachevalier, J., Murray, E. A., Málková, L., & Mishkin, M. (1999). Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. European Journal of Neuroscience, 11, 4403–4418.

    PubMed  Google Scholar 

  77. Mineka, S., Keir, R., & Price, V. (1980). Fear of snakes in wild- and laboratory-reared rhesus monkeys (Macaca mulatta). Animal Learning & Behavior, 8, 653–663.

    Google Scholar 

  78. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2004). Encodingspecific effects of social cognition on the neural correlates of subsequent memory. Journal of Neuroscience, 24, 4912–4917.

    PubMed  Google Scholar 

  79. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50, 655–663.

    PubMed  Google Scholar 

  80. Montague, P. R., & Berns, G. S. (2002). Neural economics and the biological substrates of valuation. Neuron, 36, 265–284.

    PubMed  Google Scholar 

  81. Moretti, L., Dragone, D., & di Pellegrino, G. (in press). Reward and social valuation deficits following ventromedial prefrontal damage. Journal of Cognitive Neuroscience.

  82. Murray, E. A., & Izquierdo, A. (2007). Orbitofrontal cortex and amygdala contributions to affect and action in primates. In G. Schoenbaum, J. A. Gottfried, E. A. Murray, & S. J. Ramus (Eds.), Linking affect to action: Critical contributions of the orbitofrontal cortex (Annals of the New York Academy of Sciences, Vol. 1121, pp. 273–296). New York: New York Academy of Sciences.

    Google Scholar 

  83. Murray, E. A., O’Doherty, J. P., & Schoenbaum, G. (2007). What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. Journal of Neuroscience, 27, 8166–8169.

    PubMed  Google Scholar 

  84. Neary, D., Snowden, J. S., & Mann, D. M. (2000). Classification and description of frontotemporal dementias. In J. Growdon, R. J. Wurtman, S. Corkin, & R. M. Nitsch (Eds.), The molecular basis of dementia (Annals of the New York Academy of Sciences, Vol. 920, pp. 46–51). New York: New York Academy of Sciences.

    Google Scholar 

  85. Neary, D., Snowden, J. S., Northen, B., & Goulding, P. (1988). Dementia of frontal lobe type. Journal of Neurology, Neurosurgery, & Psychiatry, 51, 353–361.

    Google Scholar 

  86. Ochsner, K. N., Beer, J. S., Robertson, E. R., Cooper, J. C., Gabrieli, J. D. E., Kihlstrom, J. F., & D’Esposito, M. (2005). The neural correlates of direct and reflected self-knowledge. NeuroImage, 28, 797–814.

    PubMed  Google Scholar 

  87. O’Doherty, J. P. (2007). Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards, and choices. In G. Schoenbaum, J. A. Gottfried, E. A. Murray, & S. J. Ramus (Eds.), Linking affect to action: Critical contributions of the orbitofrontal cortex (Annals of the New York Academy of Sciences, Vol. 1121, pp. 254–272). New York: New York Academy of Sciences.

    Google Scholar 

  88. O’Doherty, J. [P.], Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.

    PubMed  Google Scholar 

  89. Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., & Sasaki, M. (2000). Abnormal regional cerebral blood flow in childhood autism. Brain, 123, 1838–1844.

    PubMed  Google Scholar 

  90. Öngür, D., An, X., & Price, J. L. (1998). Prefrontal cortical projections to the hypothalamus in macaque monkeys. Journal of Comparative Neurology, 401, 480–505.

    PubMed  Google Scholar 

  91. Öngür, D., Drevets, W. C., & Price, J. L. (1998). Glial reduction in the subgenual prefrontal cortex in mood disorders. Proceedings of the National Academy of Sciences, 95, 13290–13295.

    Google Scholar 

  92. Öngür, D., Ferry, A. T., & Price, J. L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. Journal of Comparative Neurology, 460, 425–449.

    PubMed  Google Scholar 

  93. Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441, 223–226.

    PubMed  Google Scholar 

  94. Plassmann, H., O’Doherty, J. [P.], & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27, 9984–9988.

    PubMed  Google Scholar 

  95. Poremba, A., Malloy, M., Saunders, R. C., Carson, R. E., Herscovitch, P., & Mishkin, M. (2004). Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature, 427, 448–451.

    PubMed  Google Scholar 

  96. Price, J. L. (2005). Free will versus survival: brain systems that underlie intrinsic constraints on behavior. Journal of Comparative Neurology, 493, 132–139.

    PubMed  Google Scholar 

  97. Quirk, G. J., & Beer, J. S. (2006). Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Current Opinion in Neurobiology, 16, 723–727.

    PubMed  Google Scholar 

  98. Quirk, G. J., Garcia, R., & González-Lima, F. (2006). Prefrontal mechanisms in extinction of conditioned fear. Biological Psychiatry, 60, 337–343.

    PubMed  Google Scholar 

  99. Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184–194.

    PubMed  Google Scholar 

  100. Rilling, J. K., Gutman, D. A., Zeh, T. R., Pagnoni, G., Berns, G. S., & Kilts, C. D. (2002). A neural basis for social cooperation. Neuron, 35, 395–405.

    PubMed  Google Scholar 

  101. Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2004). The neural correlates of theory of mind within interpersonal interactions. NeuroImage, 22, 1694–1703.

    PubMed  Google Scholar 

  102. Roberts, A. C. (2006). Primate orbitofrontal cortex and adaptive behaviour. Trends in Cognitive Sciences, 10, 83–90.

    PubMed  Google Scholar 

  103. Roesch, M. R., & Olson, C. R. (2004). Neuronal activity related to reward value and motivation in primate frontal cortex. Science, 304, 307–310.

    PubMed  Google Scholar 

  104. Roesch, M. R., & Olson, C. R. (2005). Neuronal activity in primate orbitofrontal cortex reflects the value of time. Journal of Neurophysiology, 94, 2457–2471.

    PubMed  Google Scholar 

  105. Rolls, E. T. (1999). The brain and emotion. Oxford: Oxford University Press.

    Google Scholar 

  106. Rolls, E. T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotionrelated learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery, & Psychiatry, 57, 1518–1524.

    Google Scholar 

  107. Rosen, H. J., Allison, S. C., Schauer, G. F., Gorno-Tempini, M. L., Weiner, M. W., & Miller, B. L. (2005). Neuroanatomical correlates of behavioural disorders in dementia. Brain, 128, 2612–2625.

    PubMed  Google Scholar 

  108. Rudebeck, P. H., Buckley, M. J., Walton, M. E., & Rushworth, M. F. S. (2006). A role for the macaque anterior cingulate gyrus in social valuation. Science, 313, 1310–1312.

    PubMed  Google Scholar 

  109. Rudebeck, P. H., Walton, M. E., Millette, B. H. P., Shirley, E., Rushworth, M. F. S., & Bannerman, D. M. (2007). Distinct contributions of frontal areas to emotion and social behaviour in the rat. European Journal of Neuroscience, 26, 2315–2326.

    PubMed  Google Scholar 

  110. Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., & Rushworth, M. F. S. (2006). Separate neural pathways process different decision costs. Nature Neuroscience, 9, 1161–1168.

    PubMed  Google Scholar 

  111. Saleem, K. S., Kondo, H., & Price, J. L. (2008). Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. Journal of Comparative Neurology, 506, 659–693.

    PubMed  Google Scholar 

  112. Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7, 499–500.

    PubMed  Google Scholar 

  113. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the Ultimatum Game. Science, 300, 1755–1758.

    PubMed  Google Scholar 

  114. Saver, J. L., & Damasio, A. R. (1991). Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia, 29, 1241–1249.

    PubMed  Google Scholar 

  115. Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V. S., Shah, N. M., et al. (2008). Abnormal social behaviors in mice lacking Fgf17. Genes, Brain & Behavior, 7, 344–354.

    Google Scholar 

  116. Schoenbaum, G., & Roesch, M. (2005). Orbitofrontal cortex, associative learning, and expectancies. Neuron, 47, 633–636.

    PubMed  Google Scholar 

  117. Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex, 10, 272–283.

    PubMed  Google Scholar 

  118. Seltzer, B., & Pandya, D. N. (1978). Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Research, 149, 1–24.

    PubMed  Google Scholar 

  119. Shah, A. A., & Treit, D. (2003). Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Research, 969, 183–194.

    PubMed  Google Scholar 

  120. Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9, 1007–1008.

    PubMed  Google Scholar 

  121. Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7, 887–893.

    PubMed  Google Scholar 

  122. Tomlin, D., Kayali, M. A., King-Casas, B., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2006). Agent-specific responses in the cingulate cortex during economic exchanges. Science, 312, 1047–1050.

    PubMed  Google Scholar 

  123. Van Hoesen, G. W., Morecraft, R. J., & Vogt, B. A. (1993). Connections of the monkey cingulate cortex. In B. A. Vogt & M. Gabriel (Eds.), Neurobiology of the cingulate cortex and limbic thalamus: A comprehensive handbook (pp. 19–70). Boston: Birkhäuser.

    Google Scholar 

  124. Vogt, B. A., & Peters, A. (1981). Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. Journal of Comparative Neurology, 195, 603–625.

    PubMed  Google Scholar 

  125. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31–56.

    PubMed  Google Scholar 

  126. Wallis, J. D., & Miller, E. K. (2003). Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. European Journal of Neuroscience, 18, 2069–2081.

    PubMed  Google Scholar 

  127. Wheeler, E. Z., & Fellows, L. K. (2008). The human ventromedial frontal lobe is critical for learning from negative feedback. Brain, 131, 1323–1331.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. H. Rudebeck.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rudebeck, P.H., Bannerman, D.M. & Rushworth, M.F.S. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cognitive, Affective, & Behavioral Neuroscience 8, 485–497 (2008). https://doi.org/10.3758/CABN.8.4.485

Download citation

Keywords

  • Orbitofrontal Cortex
  • Comparative Neurology
  • Orbital Prefrontal Cortex
  • Decision Makin
  • Ventromedial Frontal Cortex