Cognitive, Affective, & Behavioral Neuroscience

, Volume 8, Issue 4, pp 485–497 | Cite as

The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making

  • P. H. Rudebeck
  • D. M. Bannerman
  • M. F. S. Rushworth
Connections between Computational and Neurobiological Perspectives on Decision Making
  • 1.7k Downloads

Abstract

Damage to the ventromedial frontal cortex (VMFC) in humans is associated with deficits in decision making. Decision making, however, often happens while people are interacting with others, where it is important to take the social consequences of a course of action into account. It is well known that VMFC lesions also lead to marked alterations in patients’ emotions and ability to interact socially; however, it has not been clear which parts of the VMFC are critical for these changes. Recently, there has been considerable interest in the role of the VMFC in choice behavior during interpersonal exchanges. Here, we highlight recent research that suggests that two areas within or adjacent to the VMFC, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), may play distinct but complementary roles in mediating normal patterns of emotion and social behavior. Converging lines of evidence from human, macaque, and rat studies now suggest that the OFC may be more specialized for simple emotional responses, such as fear and aggression, through its role in representing primary reinforcement or punishment. By contrast, the ACC may play a distinct role in more complex aspects of emotion, such as social interaction, by virtue of its connections with the discrete parts of the temporal lobe and subcortical structures that control autonomic responses.

References

  1. Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11, 231–239.PubMedGoogle Scholar
  2. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. [R.] (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.PubMedGoogle Scholar
  3. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th ed., text revision). Washington DC: American Psychiatric Association.Google Scholar
  4. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.PubMedGoogle Scholar
  5. Apperly, I. A., Samson, D., Chiavarino, C., & Humphreys, G. W. (2004). Frontal and temporo-parietal lobe contributions to theory of mind: neuropsychological evidence from a false-belief task with reduced language and executive demands. Journal of Cognitive Neuroscience, 16, 1773–1784.PubMedGoogle Scholar
  6. Arana, F. S., Parkinson, J. A., Hinton, E., Holland, A. J., Owen, A. M., & Roberts, A. C. (2003). Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. Journal of Neuroscience, 23, 9632–9638.PubMedGoogle Scholar
  7. Bannerman, D. M., Deacon, R. M. J., Offen, S., Friswell, J., Grubb, M., & Rawlins, J. N. P. (2002). Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behavioral Neuroscience, 116, 884–901.PubMedGoogle Scholar
  8. Barbas, H., Ghashghaei, H., Dombrowski, S. M., & Rempel-Clower, N. L. (1999). Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. Journal of Comparative Neurology, 410, 343–367.PubMedGoogle Scholar
  9. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20, 4311–4319.PubMedGoogle Scholar
  10. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15.PubMedGoogle Scholar
  11. Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.PubMedGoogle Scholar
  12. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–1295.PubMedGoogle Scholar
  13. Beer, J. S., Heerey, E. A., Keltner, D., Scabini, D., & Knight, R. T. (2003). The regulatory function of self-conscious emotion: insights from patients with orbitofrontal damage. Journal of Personality & Social Psychology, 85, 594–604.Google Scholar
  14. Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal cortex and social behavior: integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18, 871–879.PubMedGoogle Scholar
  15. Belin, P. (2006). Voice processing in human and non-human primates. Philosophical Transactions of the Royal Society B, 361, 2091–2107.Google Scholar
  16. Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games & Economic Behavior, 10, 122–142.Google Scholar
  17. Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 369–384.PubMedGoogle Scholar
  18. Butter, C. M., Snyder, D. R., & McDonald, J. A. (1970). Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys. Journal of Comparative & Physiological Psychology, 72, 132–144.Google Scholar
  19. Camille, N., Coricelli, G., Sallet, J., Pradat-Diehl, P., Duhamel, J.-R., & Sirigu, A. (2004). The involvement of the orbitofrontal cortex in the experience of regret. Science, 304, 1167–1170.PubMedGoogle Scholar
  20. Carmichael, S. T., & Price, J. L. (1995a). Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. Journal of Comparative Neurology, 363, 615–641.PubMedGoogle Scholar
  21. Carmichael, S. T., & Price, J. L. (1995b). Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 363, 642–664.PubMedGoogle Scholar
  22. Carmichael, S. T., & Price, J. L. (1996). Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 371, 179–207.PubMedGoogle Scholar
  23. Castelli, F., Frith, C. [D.], Happé, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125, 1839–1849.PubMedGoogle Scholar
  24. Chiu, P. H., Kayali, M. A., Kishida, K. T., Tomlin, D., Klinger, L. G., Klinger, M. R., & Montague, P. R. (2008). Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron, 57, 463–473.PubMedGoogle Scholar
  25. Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences, 104, 7652–7657.Google Scholar
  26. Croxson, P. L., Johansen-Berg, H., Behrens, T. E. J., Robson, M. D., Pinsk, M. A., Gross, C. G., et al. (2005). Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. Journal of Neuroscience, 25, 8854–8866.PubMedGoogle Scholar
  27. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50, 873–880.PubMedGoogle Scholar
  28. Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41, 81–94.PubMedGoogle Scholar
  29. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science, 264, 1102–1105.PubMedGoogle Scholar
  30. Deaner, R. O., Khera, A. V., & Platt, M. L. (2005). Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Current Biology, 15, 543–548.PubMedGoogle Scholar
  31. de Bruin, J. P., van Oyen, H. G., & Van de Poll, N. (1983). Behavioural changes following lesions of the orbital prefrontal cortex in male rats. Behavioural Brain Research, 10, 209–232.PubMedGoogle Scholar
  32. Drevets, W. C., Price, J. L., Simpson, J. R., Jr., Todd, R. D., Reich, T., Vannier, M., & Raichle, M. E. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824–827.PubMedGoogle Scholar
  33. Emery, N. J., Capitanio, J. P., Mason, W. A., Machado, C. J., Mendoza, S. P., & Amaral, D. G. (2001). The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115, 515–544.PubMedGoogle Scholar
  34. Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology, 35, 1731–1741.PubMedGoogle Scholar
  35. Fellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain, 126, 1830–1837.PubMedGoogle Scholar
  36. Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cerebral Cortex, 17, 2669–2674.PubMedGoogle Scholar
  37. Frith, C. D., & Frith, U. (1999). Interacting minds—a biological basis. Science, 286, 1692–1695.PubMedGoogle Scholar
  38. Frith, U. (2001). Mind blindness and the brain in autism. Neuron, 32, 969–979.PubMedGoogle Scholar
  39. Galaburda, A. M., & Pandya, D. N. (1983). The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. Journal of Comparative Neurology, 221, 169–184.PubMedGoogle Scholar
  40. Gallagher, H. L., Jack, A. I., Roepstorff, A., & Frith, C. D. (2002). Imaging the intentional stance in a competitive game. NeuroImage, 16, 814–821.PubMedGoogle Scholar
  41. Ghazanfar, A. A., Maier, J. X., Hoffman, K. L., & Logothetis, N. K. (2005). Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. Journal of Neuroscience, 25, 5004–5012.PubMedGoogle Scholar
  42. Ghazanfar, A. A., Turesson, H. K., Maier, J. X., van Dinther, R., Patterson, R. D., & Logothetis, N. K. (2007). Vocal-tract resonances as indexical cues in rhesus monkeys. Current Biology, 17, 425–430.PubMedGoogle Scholar
  43. Gothard, K. M., Battaglia, F. P., Erickson, C. A., Spitler, K. M., & Amaral, D. G. (2007). Neural responses to facial expression and face identity in the monkey amygdala. Journal of Neurophysiology, 97, 1671–1683.PubMedGoogle Scholar
  44. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology, 46, 1231–1238.PubMedGoogle Scholar
  45. Haber, S. N., Kim, K.-S., Mailly, P., & Calzavara, R. (2006). Rewardrelated cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. Journal of Neuroscience, 26, 8368–8376.PubMedGoogle Scholar
  46. Hadland, K. A., Rushworth, M. F. S., Gaffan, D., & Passingham, R. E. (2003). The effect of cingulate lesions on social behaviour and emotion. Neuropsychologia, 41, 919–931.PubMedGoogle Scholar
  47. Harlow, J. (1848). Passage of an iron rod through the head. Boston Medical & Surgical Journal, 39, 389–393.Google Scholar
  48. Harlow, J. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2, 327–347.Google Scholar
  49. Heberlein, A. S., Padon, A. A., Gillihan, S. J., Farah, M. J., & Fellows, L. K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20, 721–733.PubMedGoogle Scholar
  50. Hoffman, K. L., Gothard, K. M., Schmid, M. C., & Logothetis, N. K. (2007). Facial-expression and gaze-selective responses in the monkey amygdala. Current Biology, 17, 766–772.PubMedGoogle Scholar
  51. Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., O’Doherty, J., Bullock, P. R., & Polkey, C. E. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126, 1691–1712.PubMedGoogle Scholar
  52. Hornak, J., O’Doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R., & Polkey, C. E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16, 463–478.PubMedGoogle Scholar
  53. Hornak, J., Rolls, E. T., & Wade, D. (1996). Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia, 34, 247–261.PubMedGoogle Scholar
  54. Iversen, S. D., & Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research, 11, 376–386.Google Scholar
  55. Izquierdo, A., Suda, R. K., & Murray, E. A. (2004). Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. Journal of Neuroscience, 24, 7540–7548.PubMedGoogle Scholar
  56. Izquierdo, A., Suda, R. K., & Murray, E. A. (2005). Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. Journal of Neuroscience, 25, 8534–8542.PubMedGoogle Scholar
  57. Johansen-Berg, H., Gutman, D. A., Behrens, T. E. J., Matthews, P. M., Rushworth, M. F. S., Katz, E., et al. (2008). Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cerebral Cortex, 18, 1374–1383.PubMedGoogle Scholar
  58. Kennedy, D. P., Redcay, E., & Courchesne, E. (2006). Failing to deactivate: resting functional abnormalities in autism. Proceedings of the National Academy of Sciences, 103, 8275–8280.Google Scholar
  59. King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: reputation and trust in a two-person economic exchange. Science, 308, 78–83.PubMedGoogle Scholar
  60. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with eventrelated fMRI. NeuroReport, 12, 3683–3687.PubMedGoogle Scholar
  61. Koenigs, M., & Tranel, D. (2007). Irrational economic decisionmaking after ventromedial prefrontal damage: evidence from the Ultimatum Game. Journal of Neuroscience, 27, 951–956.PubMedGoogle Scholar
  62. Kolb, B. (1974). Social behavior of rats with chronic prefrontal lesions. Journal of Comparative & Physiological Psychology, 87, 466–474.Google Scholar
  63. Kondo, H., Saleem, K. S., & Price, J. L. (2003). Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. Journal of Comparative Neurology, 465, 499–523.PubMedGoogle Scholar
  64. Kondo, H., Saleem, K. S., & Price, J. L. (2005). Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. Journal of Comparative Neurology, 493, 479–509.PubMedGoogle Scholar
  65. Lacroix, L., Spinelli, S., Heidbreder, C. A., & Feldon, J. (2000). Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behavioral Neuroscience, 114, 1119–1130.PubMedGoogle Scholar
  66. Laplane, D., Degos, J. D., Baulac, M., & Gray, F. (1981). Bilateral infarction of the anterior cingulate gyri and of the fornices: Report of a case. Journal of the Neurological Sciences, 51, 289–300.PubMedGoogle Scholar
  67. Machado, C. J., & Bachevalier, J. (2006). The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 120, 761–786.PubMedGoogle Scholar
  68. Machado, C. J., & Bachevalier, J. (2007). The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. European Journal of Neuroscience, 25, 2885–2904.PubMedGoogle Scholar
  69. Macmillan, M. (2002). An odd kind of fame: Stories of Phineas Gage. Cambridge, MA: MIT Press.Google Scholar
  70. Maia, T. V., & McClelland, J. L. (2004). A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proceedings of the National Academy of Sciences, 101, 16075–16080.Google Scholar
  71. Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651–660.PubMedGoogle Scholar
  72. McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. Journal of Neuroscience, 27, 5796–5804.PubMedGoogle Scholar
  73. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.PubMedGoogle Scholar
  74. McEnaney, K. W., & Butter, C. M. (1969). Perseveration of responding and nonresponding in monkeys with orbital frontal ablations. Journal of Comparative & Physiological Psychology, 68, 558–561.Google Scholar
  75. McHugh, S. B., Deacon, R. M. J., Rawlins, J. N. P., & Bannerman, D. M. (2004). Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behavioral Neuroscience, 118, 63–78.PubMedGoogle Scholar
  76. Meunier, M., Bachevalier, J., Murray, E. A., Málková, L., & Mishkin, M. (1999). Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. European Journal of Neuroscience, 11, 4403–4418.PubMedGoogle Scholar
  77. Mineka, S., Keir, R., & Price, V. (1980). Fear of snakes in wild- and laboratory-reared rhesus monkeys (Macaca mulatta). Animal Learning & Behavior, 8, 653–663.Google Scholar
  78. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2004). Encodingspecific effects of social cognition on the neural correlates of subsequent memory. Journal of Neuroscience, 24, 4912–4917.PubMedGoogle Scholar
  79. Mitchell, J. P., Macrae, C. N., & Banaji, M. R. (2006). Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron, 50, 655–663.PubMedGoogle Scholar
  80. Montague, P. R., & Berns, G. S. (2002). Neural economics and the biological substrates of valuation. Neuron, 36, 265–284.PubMedGoogle Scholar
  81. Moretti, L., Dragone, D., & di Pellegrino, G. (in press). Reward and social valuation deficits following ventromedial prefrontal damage. Journal of Cognitive Neuroscience.Google Scholar
  82. Murray, E. A., & Izquierdo, A. (2007). Orbitofrontal cortex and amygdala contributions to affect and action in primates. In G. Schoenbaum, J. A. Gottfried, E. A. Murray, & S. J. Ramus (Eds.), Linking affect to action: Critical contributions of the orbitofrontal cortex (Annals of the New York Academy of Sciences, Vol. 1121, pp. 273–296). New York: New York Academy of Sciences.Google Scholar
  83. Murray, E. A., O’Doherty, J. P., & Schoenbaum, G. (2007). What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. Journal of Neuroscience, 27, 8166–8169.PubMedGoogle Scholar
  84. Neary, D., Snowden, J. S., & Mann, D. M. (2000). Classification and description of frontotemporal dementias. In J. Growdon, R. J. Wurtman, S. Corkin, & R. M. Nitsch (Eds.), The molecular basis of dementia (Annals of the New York Academy of Sciences, Vol. 920, pp. 46–51). New York: New York Academy of Sciences.Google Scholar
  85. Neary, D., Snowden, J. S., Northen, B., & Goulding, P. (1988). Dementia of frontal lobe type. Journal of Neurology, Neurosurgery, & Psychiatry, 51, 353–361.Google Scholar
  86. Ochsner, K. N., Beer, J. S., Robertson, E. R., Cooper, J. C., Gabrieli, J. D. E., Kihlstrom, J. F., & D’Esposito, M. (2005). The neural correlates of direct and reflected self-knowledge. NeuroImage, 28, 797–814.PubMedGoogle Scholar
  87. O’Doherty, J. P. (2007). Lights, camembert, action! The role of human orbitofrontal cortex in encoding stimuli, rewards, and choices. In G. Schoenbaum, J. A. Gottfried, E. A. Murray, & S. J. Ramus (Eds.), Linking affect to action: Critical contributions of the orbitofrontal cortex (Annals of the New York Academy of Sciences, Vol. 1121, pp. 254–272). New York: New York Academy of Sciences.Google Scholar
  88. O’Doherty, J. [P.], Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102.PubMedGoogle Scholar
  89. Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., & Sasaki, M. (2000). Abnormal regional cerebral blood flow in childhood autism. Brain, 123, 1838–1844.PubMedGoogle Scholar
  90. Öngür, D., An, X., & Price, J. L. (1998). Prefrontal cortical projections to the hypothalamus in macaque monkeys. Journal of Comparative Neurology, 401, 480–505.PubMedGoogle Scholar
  91. Öngür, D., Drevets, W. C., & Price, J. L. (1998). Glial reduction in the subgenual prefrontal cortex in mood disorders. Proceedings of the National Academy of Sciences, 95, 13290–13295.Google Scholar
  92. Öngür, D., Ferry, A. T., & Price, J. L. (2003). Architectonic subdivision of the human orbital and medial prefrontal cortex. Journal of Comparative Neurology, 460, 425–449.PubMedGoogle Scholar
  93. Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441, 223–226.PubMedGoogle Scholar
  94. Plassmann, H., O’Doherty, J. [P.], & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27, 9984–9988.PubMedGoogle Scholar
  95. Poremba, A., Malloy, M., Saunders, R. C., Carson, R. E., Herscovitch, P., & Mishkin, M. (2004). Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature, 427, 448–451.PubMedGoogle Scholar
  96. Price, J. L. (2005). Free will versus survival: brain systems that underlie intrinsic constraints on behavior. Journal of Comparative Neurology, 493, 132–139.PubMedGoogle Scholar
  97. Quirk, G. J., & Beer, J. S. (2006). Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Current Opinion in Neurobiology, 16, 723–727.PubMedGoogle Scholar
  98. Quirk, G. J., Garcia, R., & González-Lima, F. (2006). Prefrontal mechanisms in extinction of conditioned fear. Biological Psychiatry, 60, 337–343.PubMedGoogle Scholar
  99. Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184–194.PubMedGoogle Scholar
  100. Rilling, J. K., Gutman, D. A., Zeh, T. R., Pagnoni, G., Berns, G. S., & Kilts, C. D. (2002). A neural basis for social cooperation. Neuron, 35, 395–405.PubMedGoogle Scholar
  101. Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2004). The neural correlates of theory of mind within interpersonal interactions. NeuroImage, 22, 1694–1703.PubMedGoogle Scholar
  102. Roberts, A. C. (2006). Primate orbitofrontal cortex and adaptive behaviour. Trends in Cognitive Sciences, 10, 83–90.PubMedGoogle Scholar
  103. Roesch, M. R., & Olson, C. R. (2004). Neuronal activity related to reward value and motivation in primate frontal cortex. Science, 304, 307–310.PubMedGoogle Scholar
  104. Roesch, M. R., & Olson, C. R. (2005). Neuronal activity in primate orbitofrontal cortex reflects the value of time. Journal of Neurophysiology, 94, 2457–2471.PubMedGoogle Scholar
  105. Rolls, E. T. (1999). The brain and emotion. Oxford: Oxford University Press.Google Scholar
  106. Rolls, E. T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotionrelated learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery, & Psychiatry, 57, 1518–1524.Google Scholar
  107. Rosen, H. J., Allison, S. C., Schauer, G. F., Gorno-Tempini, M. L., Weiner, M. W., & Miller, B. L. (2005). Neuroanatomical correlates of behavioural disorders in dementia. Brain, 128, 2612–2625.PubMedGoogle Scholar
  108. Rudebeck, P. H., Buckley, M. J., Walton, M. E., & Rushworth, M. F. S. (2006). A role for the macaque anterior cingulate gyrus in social valuation. Science, 313, 1310–1312.PubMedGoogle Scholar
  109. Rudebeck, P. H., Walton, M. E., Millette, B. H. P., Shirley, E., Rushworth, M. F. S., & Bannerman, D. M. (2007). Distinct contributions of frontal areas to emotion and social behaviour in the rat. European Journal of Neuroscience, 26, 2315–2326.PubMedGoogle Scholar
  110. Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M., & Rushworth, M. F. S. (2006). Separate neural pathways process different decision costs. Nature Neuroscience, 9, 1161–1168.PubMedGoogle Scholar
  111. Saleem, K. S., Kondo, H., & Price, J. L. (2008). Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. Journal of Comparative Neurology, 506, 659–693.PubMedGoogle Scholar
  112. Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7, 499–500.PubMedGoogle Scholar
  113. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the Ultimatum Game. Science, 300, 1755–1758.PubMedGoogle Scholar
  114. Saver, J. L., & Damasio, A. R. (1991). Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia, 29, 1241–1249.PubMedGoogle Scholar
  115. Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V. S., Shah, N. M., et al. (2008). Abnormal social behaviors in mice lacking Fgf17. Genes, Brain & Behavior, 7, 344–354.Google Scholar
  116. Schoenbaum, G., & Roesch, M. (2005). Orbitofrontal cortex, associative learning, and expectancies. Neuron, 47, 633–636.PubMedGoogle Scholar
  117. Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex, 10, 272–283.PubMedGoogle Scholar
  118. Seltzer, B., & Pandya, D. N. (1978). Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Research, 149, 1–24.PubMedGoogle Scholar
  119. Shah, A. A., & Treit, D. (2003). Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Research, 969, 183–194.PubMedGoogle Scholar
  120. Somerville, L. H., Heatherton, T. F., & Kelley, W. M. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9, 1007–1008.PubMedGoogle Scholar
  121. Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7, 887–893.PubMedGoogle Scholar
  122. Tomlin, D., Kayali, M. A., King-Casas, B., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2006). Agent-specific responses in the cingulate cortex during economic exchanges. Science, 312, 1047–1050.PubMedGoogle Scholar
  123. Van Hoesen, G. W., Morecraft, R. J., & Vogt, B. A. (1993). Connections of the monkey cingulate cortex. In B. A. Vogt & M. Gabriel (Eds.), Neurobiology of the cingulate cortex and limbic thalamus: A comprehensive handbook (pp. 19–70). Boston: Birkhäuser.Google Scholar
  124. Vogt, B. A., & Peters, A. (1981). Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. Journal of Comparative Neurology, 195, 603–625.PubMedGoogle Scholar
  125. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31–56.PubMedGoogle Scholar
  126. Wallis, J. D., & Miller, E. K. (2003). Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. European Journal of Neuroscience, 18, 2069–2081.PubMedGoogle Scholar
  127. Wheeler, E. Z., & Fellows, L. K. (2008). The human ventromedial frontal lobe is critical for learning from negative feedback. Brain, 131, 1323–1331.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  • P. H. Rudebeck
    • 1
  • D. M. Bannerman
    • 1
  • M. F. S. Rushworth
    • 1
  1. 1.University of OxfordOxfordEngland

Personalised recommendations