Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 7, Issue 4, pp 391–395 | Cite as

The anterior cingulate gyrus and the mechanism of self-regulation

  • Michael I. Posner
  • Mary K. Rothbart
  • Brad E. Sheese
  • Yiyuan Tang
Article

Abstract

The midfrontal cortex, and particularly the anterior cingulate gyrus, appears active in many studies of functional imaging. Various models have competed to explain the functions of the anterior cingulate in relation to its patterns of activation. We believe that the concept of self-regulation is valuable in considering the role of the cingulate. The sensitivity of the cingulate to both reward and pain, and evidence for cingulate coupling to cognitive and emotional areas during task performance, support this identification. Self-regulation is a very broad concept that does not lend itself very well to specific models or tests, but it does provide a framework for examining development. We trace the role of the midfrontal cortex in evolution and infant development. Both genes and environment influence self-regulation. The presence of both genetic and environmental effects raises the issue of their interaction, which we discuss in relation to the dopamine 4 receptor gene and parenting methods. The role of the midfrontal cortex in self-regulation allows us to consider both brain networks common to all people and network efficiency underlying individual differences in behavior. This research was supported by NIMH Grant HD5801 to Georgia State University and by a grant from the Dana Foundation for the study of the arts.

Keywords

Anterior Cingulate Cortex Brain Network Effortful Control Conflict Task Anterior Cingulate Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allman, J. M., Watson, K. K., Tetreault, N. A., & Hakeem, A. Y. (2005). Intuition and autism: A possible role for Von Economo neurons. Trends in Cognitive Science, 9, 367–373.CrossRefGoogle Scholar
  2. Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene—environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406–409.PubMedCrossRefGoogle Scholar
  3. Beane, M., & Marrocco, R. (2004). Cholinergic and noradrenergic inputs to the posterior parietal cortex modulate the components of exogenous attention. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 313–325). New York: Guilford.Google Scholar
  4. Beauregard, M., Levesque, J., & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. Journal of Neuroscience, 21, RC165.PubMedGoogle Scholar
  5. Berger, A., Tzur, G., & Posner, M. I. (2006). Infant brains detect arithmetic errors. Proceedings of the National Academy of Sciences, 103, 12649–12653.CrossRefGoogle Scholar
  6. Blasi, G., Mattay, V. S., Bertolino, A., Elvevåg, B., Callicott, J. H., Das, S., et al. (2005). Effect of catechol-o-methyltransferase val158met genotype on attentional control. Journal of Neuroscience, 25, 5038–5045.PubMedCrossRefGoogle Scholar
  7. Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Journal of Cognitive, Affective, & Behavioral Neuroscience, 7, 356–366.CrossRefGoogle Scholar
  8. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMedCrossRefGoogle Scholar
  9. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.PubMedCrossRefGoogle Scholar
  10. Canli, T., Omura, K., Haas, B. W., Fallgatter, A., Todd, R., Constable, R. T., & Lesch, K. P. (2005). Beyond affect: A role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proceedings of the National Academy of Sciences, 102, 12224–12229.CrossRefGoogle Scholar
  11. Chang, F., & Burns, B. M. (2005). Attention in preschoolers: Associations with effortful control and motivation. Child Development, 76, 247–263.PubMedCrossRefGoogle Scholar
  12. Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18, 766–780.PubMedCrossRefGoogle Scholar
  13. Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 2037–2078.PubMedCrossRefGoogle Scholar
  14. Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.CrossRefGoogle Scholar
  15. Diamond, A. (1990). Developmental time course in human infants and infant monkeys and the neural basis of inhibitory control in reaching. Annals of the New York Academy of Sciences, 608, 637–676.PubMedCrossRefGoogle Scholar
  16. Diamond, A., Briand, L., Fossella, J., & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. American Journal of Psychiatry, 161, 125–132.PubMedCrossRefGoogle Scholar
  17. Ding, Y. C., Chi, H. C., Grady, D. L., Morishima, A., Kidd, J. R., Kidd, K. K., et al. (2002). Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proceedings of the National Academy of Sciences, 99, 309–314.CrossRefGoogle Scholar
  18. Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., et al. (2007). Distinct brain networks for adaptive and stable task control in humans, Proceedings of the National Academy of Sciences, 104, 11073–11078.CrossRefGoogle Scholar
  19. Drevets, W. C., & Raichle, M. E. (1998). Reciprocal suppression of regional blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cognition & Emotion, 12, 353–385.CrossRefGoogle Scholar
  20. Dumas, T., Hostick, U., Wu, H., Spaltenstein, J., Ghatak, C., Nguyen, J., & Kentros, C. (2005). Maximizing the anatomical specificity of native neuronal promoters by a subtractive transgenic technique. Society for Neuroscience Abstracts, No. 228.6. Online.Google Scholar
  21. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. Science, 302, 290–292.PubMedCrossRefGoogle Scholar
  22. Ellis, L. K., & Rothbart, M. K. (2001). Revision of the early adolescent temperament questionnaire. Paper presented at the 2001 meeting of the Society for Research in Child Development, Minneapolis, Minnesota.Google Scholar
  23. Ellis, L. K., Rothbart, M. K., & Posner, M. I. (2004). Individual differences in executive attention predict self-regulation and adolescent psychosocial behaviors Annals of the New York Academy of Sciences, 1031, 337–340.CrossRefGoogle Scholar
  24. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871–882.PubMedCrossRefGoogle Scholar
  25. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. NeuroImage, 18, 42–57.PubMedCrossRefGoogle Scholar
  26. Fan, J., Fossella, J. A., Sommer, T., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences, 100, 7406–7411.CrossRefGoogle Scholar
  27. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.PubMedCrossRefGoogle Scholar
  28. Fan, J., Wu, Y., Fossella, J., & Posner, M. I. (2001). Assessing the heritability of attentional networks. BMC Neuroscience, 2, 14.PubMedCrossRefGoogle Scholar
  29. Fonagy, P., & Target, M. (2002). Early intervention and the development of self-regulation. Psychoanalytic Inquiry, 22, 307–335.CrossRefGoogle Scholar
  30. Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J. M., Pfaff, D. W., & Posner, M. I. (2002). Assessing the molecular genetics of attention networks. BMC Neuroscience, 3, 14.PubMedCrossRefGoogle Scholar
  31. Gerardi-Caulton, G. (2000). Sensitivity to spatial conflict and the development of self-regulation in children 24–36 months of age. Developmental Science, 3, 397–404.CrossRefGoogle Scholar
  32. González, C., Fuentes, L. J., Carranza, J. A., & Estévez, A. F. (2001). Temperament and attention in the self-regulation of 7-year-old children. Personality & Individual Differences, 30, 931–946.CrossRefGoogle Scholar
  33. Hampton, A. N., & O’Doherty, J. P. (2007). Decoding the neural substrates of reward-related decision making with functional MRI. Proceedings of the National Academy of Sciences, 104, 1377–1382.CrossRefGoogle Scholar
  34. Han, C. J., O’Tuathaigh, C. M., & Koch, C. (2004). A practical assay for attention in mice. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 294–312). New York: Guilford.Google Scholar
  35. Kampe, K. K. W., Frith, C. D., & Frith, U. (2003). “Hey John”: Signals conveying communicative intention toward the self activate brain regions associated with“mentalizing,” regardless of modality. Journal of Neuroscience, 23, 5258–5263.PubMedGoogle Scholar
  36. Ochsner, K. N., Kossyln, S. M., Cosgrove, G. R., Cassem, E. H., Price, B. H., Nierenberg, A. A., & Rauch, S. L. (2001). Deficits in visual cognition and attention following bilateral anterior cingulotomy. Neuropsychologia, 39, 219–230.PubMedCrossRefGoogle Scholar
  37. Posner, M. I., & Rothbart, M. K. (2007a). Educating the human brain. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  38. Posner, M. I., & Rothbart, M. K. (2007b). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.PubMedCrossRefGoogle Scholar
  39. Posner, M. I., Sheese, B. E., Odludas, Y., & Tang, Y. (2007). Analyzing and shaping neural networks. Neural Networks, 19, 1422–1429.CrossRefGoogle Scholar
  40. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., & Bushnell, M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277, 968–971.PubMedCrossRefGoogle Scholar
  41. Reuter, M., Ott, U., Vaitl, D., & Hennig, J. (2007). Impaired executive control is associated with a variation in the promoter region of the tryptophan hydroxylase 2 gene. Journal of Cognitive Neuroscience, 19, 401–408.PubMedCrossRefGoogle Scholar
  42. Rothbart, M. K., Ellis, L. K., & Posner, M. I. (2004). Temperament and self-regulation. In R. F. Baumeister & K. D. Vohs (Eds.), Handbook of self-regulation: Research, theory, and applications (pp. 357–370). New York: Guilford.Google Scholar
  43. Rothbart, M. K., Ellis, L. K., Rueda, M. R., & Posner, M. I. (2003). Developing mechanisms of temperamental effortful control. Journal of Personality, 71, 1113–1143.PubMedCrossRefGoogle Scholar
  44. Rothbart, M. K., & Rueda, M. R. (2005). The development of effortful control. In U. Mayr, E. Awh, & S. W. Keele (Eds.), Developing individuality in the human brain: A tribute to Michael I. Posner (pp. 167–188). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  45. Rueda, M. R., Posner, M. I., & Rothbart, M. K. (2004). Attentional control and self-regulation. In R. F. Baumeister & K. D. Vohs (Edds.), Handbook of self-regulation: Research, theory, and applications (pp. 283–300). New York: Guilford.Google Scholar
  46. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences, 102, 14931–14936.CrossRefGoogle Scholar
  47. Sheese, B. E., Rothbart, M. K., Posner, M. I., White, L. K., & Fraundorf, S. H. (2007). Executive attention and self-regulation in infancy. Manuscript submitted for publication.Google Scholar
  48. Sheese, B. E., Voelker, P., Rothbart, M. K., & Posner, M. I. (in press). Caregiver quality interacts with genetic variation to influence aspects of toddler temperament. Development & Psychopathology.Google Scholar
  49. Whittle, S. L. (2007). The neurobiological correlates of temperament in early adolescents. Unpublished doctoral dissertation, University of Melbourne, Australia.Google Scholar
  50. Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.PubMedCrossRefGoogle Scholar
  51. Zilles, K. (2005). Evolution of the human brain and comparative cyto- and receptor architecture. In S. Dehaene, J.-R. Duhamel, M. D. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp. 41–56). Cambridge, MA: MIT Press, Bradford Books.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  • Michael I. Posner
    • 2
  • Mary K. Rothbart
    • 2
  • Brad E. Sheese
    • 2
  • Yiyuan Tang
    • 2
    • 1
  1. 1.Dalian University of TechnologyDalianChina
  2. 2.Department of Psychology1227 University of OregonEugene

Personalised recommendations