Cognitive, Affective, & Behavioral Neuroscience

, Volume 7, Issue 4, pp 367–379 | Cite as

Anterior cingulate cortex and conflict detection: An update of theory and data

  • Cameron S. CarterEmail author
  • Vincent van Veen


The dorsal anterior cingulate cortex (ACC) and associated regions of the medial frontal wall have often been hypothesized to play an important role in cognitive control. We have proposed that the ACC’s specific role in cognitive control is to detect conflict between simultaneously active, competing representations and to engage the dorsolateral prefrontal cortex (DLPFC) to resolve such conflict. Here we review some of the evidence supporting this theory, from event-related potential (ERP) and fMRI studies. We focus on data obtained from interference tasks, such as the Stroop task, and review the evidence that trial-to-trial changes in control engagement can be understood as driven by conflict detection; the data suggest that levels of activation of the ACC and the DLPFC in such tasks do indeed reflect conflict and control, respectively. We also discuss some discrepant results in the literature that highlight the need for future research.


Anterior Cingulate Cortex Cognitive Control Stroop Task Simon Effect Incongruent Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alain, C., McNeely, H. E., He, Y., Christensen, B. K., & West, R. (2002). Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia. bral Cortex12, 840–846.CrossRefGoogle Scholar
  2. Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., et al. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303, 232–235.PubMedCrossRefGoogle Scholar
  3. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus—norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.PubMedCrossRefGoogle Scholar
  4. Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41, 473–487.PubMedCrossRefGoogle Scholar
  5. Band, G. P. H., Ridderinkhof, K. R., & van der Molen, M. W. (2003). Speed—accuracy modulation in case of conflict: The roles of activation and inhibition. Psychological Research, 67, 266–279.PubMedCrossRefGoogle Scholar
  6. Barch, D. M., Braver, T. S., Sabb, F. W., & Noll, D. C. (2000). Anterior cingulate and the monitoring of response conflict: Evidence from an fMRI study of overt word generation. Journal of Cognitive Neuroscience, 12, 298–309.PubMedCrossRefGoogle Scholar
  7. Bishop, S., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal cortical function and anxiety: Controlling attention to threatrelated stimuli. Nature Neuroscience, 7, 184–188.PubMedCrossRefGoogle Scholar
  8. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMedCrossRefGoogle Scholar
  9. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.PubMedCrossRefGoogle Scholar
  10. Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.PubMedCrossRefGoogle Scholar
  11. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825–836.PubMedCrossRefGoogle Scholar
  12. Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.PubMedCrossRefGoogle Scholar
  13. Brown, J. W., Reynolds, J. R., & Braver, T. S. (2007). A computational model of fractionated conflict-control mechanisms in taskswitching. Cognitive Psychology, 55, 37–85.PubMedCrossRefGoogle Scholar
  14. Burle, B., Possamaï, C.-A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: An electromyographic and distributional analysis. Psychological Research, 66, 324–336.PubMedCrossRefGoogle Scholar
  15. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedCrossRefGoogle Scholar
  16. Cohen, J. D., Botvinick, M. M., & Carter, C. S. (2000). Anterior cingulate and prefrontal cortex: Who’s in control? Nature Neuroscience, 3, 421–423.PubMedCrossRefGoogle Scholar
  17. Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.PubMedCrossRefGoogle Scholar
  18. Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception & Performance, 11, 529–553.CrossRefGoogle Scholar
  19. Cooke, J. D., & Diggles, V. A. (1984). Rapid error correction during human arm movements: Evidence for central monitoring. Journal of Motor Behavior, 16, 348–363.PubMedGoogle Scholar
  20. Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493, 154–166.PubMedCrossRefGoogle Scholar
  21. Critchley, H. D., Mathias, C. J., Josephs, O., O’Doherty, J., Zanini, S., Dewar, B.-K., et al. (2003). Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain, 126, 2139–2152.PubMedCrossRefGoogle Scholar
  22. Critchley, H. D., Tang, J., Glaser, D., Butterworth, B., & Dolan, R. J. (2005). Anterior cingulate activity during error and autonomic response. NeuroImage, 27, 885–895.PubMedCrossRefGoogle Scholar
  23. de Bruijn, E. R. A., Hulstijn, W., Verkes, R. J., Ruigt, G. S. F., & Sabbe, B. G. C. (2004). Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology, 177, 151–160.PubMedCrossRefGoogle Scholar
  24. de Jong, R., Liang, C.-C., & Lauber, E. J. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus—response correspondence. Journal of Experimental Psychology: Human Perception & Performance, 20, 731–750.CrossRefGoogle Scholar
  25. de Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. (1988). Use of partial stimulus information in response processing. Journal of Experimental Psychology: Human Perception & Performance, 14, 682–692.CrossRefGoogle Scholar
  26. Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25, 11730–11737.PubMedCrossRefGoogle Scholar
  27. Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., et al. (1998). Imaging unconscious semantic priming. Nature, 395, 597–600.PubMedCrossRefGoogle Scholar
  28. Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.CrossRefGoogle Scholar
  29. di Pellegrino, G., Ciaramelli, E., & Làdavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19, 275–286.PubMedCrossRefGoogle Scholar
  30. Durston, S., Thomas, K. M., Worden, M. S., Yang, Y., & Casey, B. J. (2002). The effect of preceding context on inhibition: An event-related fMRI study. NeuroImage, 16, 449–453.PubMedCrossRefGoogle Scholar
  31. Egner, T., & Hirsch, J. (2005a). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784–1790.PubMedCrossRefGoogle Scholar
  32. Egner, T., & Hirsch, J. (2005b). The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage, 24, 539–547.PubMedCrossRefGoogle Scholar
  33. Eimer, M. (1995). Stimulus—response compatibility and automatic response activation: Evidence from psychophysiological studies. Journal of Experimental Psychology: Human Perception & Performance, 21, 837–854.CrossRefGoogle Scholar
  34. Eimer, M., Hommel, B., & Prinz, W. (1995). S—R compatibility and response selection. Acta Psychologica, 90, 301–313.CrossRefGoogle Scholar
  35. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.Google Scholar
  36. Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25, 249–263.Google Scholar
  37. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalography & Clinical Neurophysiology, 78, 447–455.CrossRefGoogle Scholar
  38. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.PubMedCrossRefGoogle Scholar
  39. Fellows, L. K., & Farah, M. J. (2005). Is anterior cingulate cortex necessary for cognitive control? Brain, 128, 788–796.PubMedCrossRefGoogle Scholar
  40. Fornito, A., Yücel, M., Wood, S., Stuart, G. W., Buchanan, J.-A., Proffitt, T., et al. (2004). Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cerebral Cortex, 14, 424–431.PubMedCrossRefGoogle Scholar
  41. Fugelsang, J. A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying complex causal thinking. Neuropsychologia, 43, 1204–1213.PubMedCrossRefGoogle Scholar
  42. Garavan, H., Ross, T. J., Kaufman, J., & Stein, E. A. (2003). A midline dissociation between error-processing and response-conflict monitoring. NeuroImage, 20, 1132–1139.PubMedCrossRefGoogle Scholar
  43. Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17, 1820–1829.PubMedCrossRefGoogle Scholar
  44. Gehring, W. J., & Fencsik, D. E. (2001). Functions of the medial frontal cortex in the processing of conflict and errors. Journal of Neuroscience, 21, 9430–9437.PubMedGoogle Scholar
  45. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.CrossRefGoogle Scholar
  46. Gehring, W. J., Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Probability effects on stimulus evaluation and response processes. Journal of Experimental Psychology: Human Perception & Performance, 18, 198–216.CrossRefGoogle Scholar
  47. Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11, 1–6.PubMedCrossRefGoogle Scholar
  48. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 331–355). Cambridge, MA: MIT Press.Google Scholar
  49. Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506.CrossRefGoogle Scholar
  50. Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception & Performance, 14, 331–344.CrossRefGoogle Scholar
  51. Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44, 389–400.PubMedCrossRefGoogle Scholar
  52. Gruber, O., & Goschke, T. (2004). Executive control emerging from dynamic interactions between brain systems mediating language, working memory and attentional processes. Acta Psychologica, 115, 105–121.PubMedCrossRefGoogle Scholar
  53. Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 40, 895–903.PubMedCrossRefGoogle Scholar
  54. Hajcak, G., & Simons, R. F. (2002). Error-related brain activity in obsessive-compulsive undergraduates. Psychiatry Research, 110, 63–72.PubMedCrossRefGoogle Scholar
  55. Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the errorrelated negativity. Psychological Review, 109, 679–709.PubMedCrossRefGoogle Scholar
  56. Holroyd, C. B., Dien, J., & Coles, M. G. H. (1998). Error-related scalp potentials elicited by hand and foot movements: Evidence for an output-independent error-processing system in humans. Neuroscience Letters, 242, 65–68.PubMedCrossRefGoogle Scholar
  57. Holroyd, C. B., Yeung, N., Coles, M. G. H., & Cohen, J. D. (2005). A mechanism for error detection in speeded response time tasks. Journal of Experimental Psychology: General, 134, 163–191.CrossRefGoogle Scholar
  58. Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 302, 120–122.PubMedCrossRefGoogle Scholar
  59. Jentzsch, I., & Leuthold, H. (2006). Control over speeded actions: A common processing locus for micro- and macro-trade-offs? Quarterly Journal of Experimental Psychology, 59, 1329–1337.CrossRefGoogle Scholar
  60. Jodo, E., & Kayama, Y. (1992). Relation of a negative ERP component to response inhibition in a go/no-go task. Electroencephalography & Clinical Neurophysiology, 82, 477–482.CrossRefGoogle Scholar
  61. Johannes, S., Wieringa, B. M., Nager, W., Rada, D., Müller-Vahl, K. R., Emrich, H. M., et al. (2003). Tourette Syndrome and obsessive-compulsive disorder: Event-related brain potentials show similar mechanisms of frontal inhibition but dissimilar target evaluation processes. Behavioural Neurology, 14, 9–17.PubMedGoogle Scholar
  62. Jones, A. D., Cho, R. Y., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective, & Behavioral Neuroscience, 2, 300–317.CrossRefGoogle Scholar
  63. Karlin, L., Martz, M. J., & Mordkoff, A. M. (1970). Motor performance and sensory-evoked potentials. Electroencephalography & Clinical Neurophysiology, 28, 307–313.CrossRefGoogle Scholar
  64. Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an fMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 33, 399–405.PubMedCrossRefGoogle Scholar
  65. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.PubMedCrossRefGoogle Scholar
  66. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Johnson, M. K., Stenger, V. A., Aizenstein, H., & Carter, C. S. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162, 1833–1839.PubMedCrossRefGoogle Scholar
  67. Kleiter, G. D., & Schwarzenbacher, K. (1989). Beyond the answer: Post-error processes. Cognition, 32, 255–277.PubMedCrossRefGoogle Scholar
  68. Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography & Clinical Neurophysiology, 99, 19–27.CrossRefGoogle Scholar
  69. Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenia patients. Journal of Abnormal Psychology, 108, 337–346.PubMedCrossRefGoogle Scholar
  70. Kopp, B., Rist, F., & Mattler, U. (1996). N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology, 33, 282–294.PubMedCrossRefGoogle Scholar
  71. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus—response compatibility: A model and taxonomy. Psychological Review, 97, 253–270.PubMedCrossRefGoogle Scholar
  72. Kuhl, B. A., Dudukovic, N. M., Kahn, I., & Wagner, A. D. (2007). Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nature Neuroscience, 10, 908–914.PubMedCrossRefGoogle Scholar
  73. Kunde, W. (2003). Sequential modulations of stimulus—response correspondence effects depend on awareness of response conflict. Psychonomic Bulletin & Review, 10, 198–205.Google Scholar
  74. Laming, D. (1979). Choice reaction performance following an error. Acta Psychologica, 43, 199–224.CrossRefGoogle Scholar
  75. Liotti, M., Pliszka, S. R., Perez, R., Kothmann, D., & Woldorff, M. G. (2005). Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex, 41, 377–388.PubMedCrossRefGoogle Scholar
  76. Luu, P., & Tucker, D. M. (2001). Regulating action: Alternating activation of midline frontal and motor cortical networks. Clinical Neurophysiology, 112, 1295–1306.PubMedCrossRefGoogle Scholar
  77. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.PubMedCrossRefGoogle Scholar
  78. MacLeod, C. M. (1992). The Stroop task: The “gold standard” of attentional measures. Journal of Experimental Psychology: General, 121, 12–14.CrossRefGoogle Scholar
  79. MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4, 383–391.PubMedCrossRefGoogle Scholar
  80. Maril, A., Wagner, A. D., & Schacter, D. L. (2001). On the tip of the tongue: An event-related fMRI study of semantic retrieval failure and cognitive conflict. Neuron, 31, 653–660.PubMedCrossRefGoogle Scholar
  81. Mathalon, D. H., Fedor, M., Faustman, W. O., Gray, M., Askari, N., & Ford, J. M. (2002). Response-monitoring dysfunction in schizophrenia: An event-related brain potential study. Journal of Abnormal Psychology, 111, 22–41.PubMedCrossRefGoogle Scholar
  82. Mathalon, D. H., Whitfield, S. L., & Ford, J. M. (2003). Anatomy of an error: ERP and fMRI. Biological Psychology, 64, 119–141.PubMedCrossRefGoogle Scholar
  83. Mayr, U. (2004). Conflict, consciousness, and control. Trends in Cognitive Sciences, 8, 145–148.PubMedCrossRefGoogle Scholar
  84. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452.PubMedGoogle Scholar
  85. Milham, M. P., Banich, M. T., Webb, A., Barad, V., Cohen, N. J., Wszalek, T., & Kramer, A. F. (2001). The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Cognitive Brain Research, 12, 467–473.PubMedCrossRefGoogle Scholar
  86. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRefGoogle Scholar
  87. Miller, J. (1998). Effects of stimulus—response probability on choice reaction time: Evidence from the lateralized readiness potential. Journal of Experimental Psychology: Human Perception & Performance, 24, 1521–1534.CrossRefGoogle Scholar
  88. Miller, J., & Hackley, S. A. (1992). Electrophysiological evidence for temporal overlap among contingent mental processes. Journal of Experimental Psychology: General, 121, 195–209.CrossRefGoogle Scholar
  89. Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Eventrelated brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9, 788–798.CrossRefGoogle Scholar
  90. Miltner, W. H. R., Lemke, U., Weiss, T., Holroyd, C., Scheffers, M. K., & Coles, M. G. H. (2003). Implementation of error-processing in the human anterior cingulate cortex: A source analysis of the magnetic equivalent of the error-related negativity. Biological Psychology, 64, 157–166.PubMedCrossRefGoogle Scholar
  91. Nakamura, K., Roesch, M. R., & Olson, C. R. (2005). Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. Journal of Neurophysiology, 93, 884–908.PubMedCrossRefGoogle Scholar
  92. Nelson, J. K., Reuter-Lorenz, P. A., Sylvester, C.-Y. C., Jonides, J., & Smith, E. E. (2003). Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proceedings of the National Academy of Sciences, 100, 11171–11175.CrossRefGoogle Scholar
  93. Nieuwenhuis, S., Schweizer, T. S., Mars, R. B., Botvinick, M. M., & Hajcak, G. (2007). Error-likelihood prediction in the medial frontal cortex: A critical evaluation. Cerebral Cortex, 17, 1570–1581.PubMedCrossRefGoogle Scholar
  94. Nieuwenhuis, S., Slagter, H. A., Alting von Geusau, N. J., Heslenfeld, D. J., & Holroyd, C. B. (2005). Knowing good from bad: Differential activation of human cortical areas by positive and negative outcomes. European Journal of Neuroscience, 21, 3161–3168.PubMedCrossRefGoogle Scholar
  95. Nieuwenhuis, S., Stins, J. F., Posthuma, D., Polderman, T. J. C., Boomsma, D. I., & de Geus, E. J. (2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34, 1260–1272.Google Scholar
  96. Nieuwenhuis, S., Yeung, N., Van Den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3, 17–26.CrossRefGoogle Scholar
  97. Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin, J. M., & Hof, P. R. (1999). A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Sciences, 96, 5268–5273.CrossRefGoogle Scholar
  98. Ochsner, K. N., Kosslyn, S. M., Cosgrove, G. R., Cassem, E. H., Price, B. H., Nierenberg, A. A., & Rauch, S. L. (2001). Deficits in visual cognition and attention following bilateral anterior cingulotomy. Neuropsychologia, 39, 219–230.PubMedCrossRefGoogle Scholar
  99. Paus, T., Tomaiuolo, F., Otaky, N., MacDonald, D., Petrides, M., Atlas, J., et al. (1996). Human cingulate and paracingulate sulci: Pattern, variability, asymmetry, and probabilistic map. Cerebral Cortex, 6, 207–214.PubMedCrossRefGoogle Scholar
  100. Praamstra, P., & Oostenveld, R. (2003). Attention and movementrelated motor cortex activation: A high-density EEG study of spatial stimulus-response compatibility. Cognitive Brain Research, 16, 309–322.PubMedCrossRefGoogle Scholar
  101. Pritchard, W. S., Shappell, S. A., & Brandt, M. E. (1991). Psychophysiology of N200/N400: A review and classification scheme. In J. R. Jennings, P. K. Ackles, & M. G. H. Coles (Eds.), Advances in Psychology (Vol. 4, pp. 43–106). greenwich, CT: JAI Press.Google Scholar
  102. Rabbitt, P. M. A. (1996). Errors and error-correction in choice-response tasks. Journal of Exper imental Psychology, 71, 264–272.CrossRefGoogle Scholar
  103. Rabbitt, P. M. A. (1967). Time to detect errors as a function of factors affecting choice-response time. Acta Psychologica, 27, 131–142.PubMedCrossRefGoogle Scholar
  104. Rabbitt, P. M. A. (2002). Consciousness is slower than you think. Quarterly Journal of Experimental Psychology, 55A, 1081–1092.Google Scholar
  105. Rabbitt, P. M. A., & Rodgers, B. (1977). What does a man do after he makes an error? An analysis of response programming. Quarterly Journal of Experimental Psychology, 29, 727–743.CrossRefGoogle Scholar
  106. Rabbitt, P. M. A., & Vyas, S. (1981). Processing a display even after you make a response to it: How perceptual errors can be corrected. Quarterly Journal of Experimental Psychology, 33A, 223–239.Google Scholar
  107. Riba, J., Rodríguez-Fornells, A., Morte, A., Münte, T. F., & Barbanoj, M. J. (2005). Noradrenergic stimulation enhances human action monitoring. Journal of Neuroscience, 25, 4370–4374.PubMedCrossRefGoogle Scholar
  108. Riba, J., Rodríguez-Fornells, A., Münte, T. F., & Barbanoj, M. J. (2005). A neurophysiological study of the detrimental effects of alprazolam on human action monitoring. Cognitive Brain Research, 25, 554–565.PubMedCrossRefGoogle Scholar
  109. Ridderinkhof, K. R. (2002). Micro- and macro-adjustments of task set: Activation and suppression in conflict tasks. Psychological Research, 66, 312–323.PubMedCrossRefGoogle Scholar
  110. Ridderinkhof, [K.] R., de Vlugt, Y., Bramlage, A., Spaan, M., Elton, M., Snel, J., & Band, G. P. H. (2002). Alcohol consumption impairs detection of performance errors in mediofrontal cortex. Science, 298, 2209–2211.PubMedCrossRefGoogle Scholar
  111. Ridderinkhof, K. R., & van der Molen, M. W. (1995). When global information and local information collide: A brain potential analysis of the locus of interference effects. Biological Psychology, 41, 29–53.PubMedCrossRefGoogle Scholar
  112. Rodríguez-Fornells, A., Kurzbuch, A. R., & Münte, T. F. (2002). Time course of error detection and correction in humans: Neurophysiological evidence. Journal of Neuroscience, 22, 9990–9996.PubMedGoogle Scholar
  113. Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. NeuroImage, 20, 351–358.PubMedCrossRefGoogle Scholar
  114. Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action set and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8, 410–417.PubMedCrossRefGoogle Scholar
  115. Santesso, D. L., Segalowitz, S. J., & Schmidt, L. A. (2006). Error-related electrocortical responses are enhanced in children with obsessive-compulsive behaviors. Developmental Neuropsychology, 29, 431–445.PubMedCrossRefGoogle Scholar
  116. Scerif, G., Worden, M. S., Davidson, M., Seiger, L., & Casey, B. J. (2006). Context modulates early stimulus processing when resolving stimulus-response conflict. Journal of Cognitive Neuroscience, 18, 781–792.PubMedCrossRefGoogle Scholar
  117. Schachar, R. J., Chen, S., Logan, G. D., Ornstein, T. J., Crosbie, J., Ickowicz, A., & Pakulak, A. (2004). Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 32, 285–293.PubMedCrossRefGoogle Scholar
  118. Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception & Performance, 26, 141–151.CrossRefGoogle Scholar
  119. Scheffers, M. K., Coles, M. G. H., Bernstein, P., Gehring, W. J., & Donchin, E. (1996). Event-related brain potentials and error-related processing: An analysis of incorrect responses to go and no-go stimuli. Psychophysiology, 33, 42–53.PubMedCrossRefGoogle Scholar
  120. Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81, 174–176.PubMedCrossRefGoogle Scholar
  121. Simon, J. R., & Berbaum, K. (1990). Effect of conflicting cues on information processing: The “Stroop effect” vs. the “Simon effect.” Acta Psychologica, 73, 159–170.PubMedCrossRefGoogle Scholar
  122. Spencer, K. M., & Coles, M. G. H. (1999). The lateralized readiness potential: Relationship between human data and response activation in a connectionist model. Psychophysiology, 36, 364–370.PubMedCrossRefGoogle Scholar
  123. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  124. Stürmer, B., & Leuthold, H. (2003). Control over response priming in visuomotor processing: A lateralized readiness potential study. Experimental Brain Research, 153, 35–44.CrossRefGoogle Scholar
  125. Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception & Performance, 28, 1345–1363.CrossRefGoogle Scholar
  126. Swick, D., & Turken, A. U. (2002). Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proceedings of the National Academy of Sciences, 99, 16354–16359.CrossRefGoogle Scholar
  127. Tieges, Z., Ridderinkhof, K. R., Snel, J., & Kok, A. (2004). Caffeine strengthens action monitoring: Evidence from the error-related negativity. Cognitive Brain Research, 21, 87–93.PubMedCrossRefGoogle Scholar
  128. Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict adaptation effect: It’s not just priming. Cognitive, Affective, & Behavioral Neuroscience, 5, 467–472.CrossRefGoogle Scholar
  129. Ullsperger, M., & Szymanowski, F. (2004). ERP correlates of error relevance. In M. Ullsperger & M. Falkenstein (Eds.), Errors, conflict and the brain: Current opinions on performance monitoring (pp. 171–177). Leipzig: Max Planck Institute for Human Cognitive and Brain Science.Google Scholar
  130. Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage, 14, 1387–1401.PubMedCrossRefGoogle Scholar
  131. Ullsperger, M., & von Cramon, D. Y. (2004). Neuroimaging of performance monitoring: Error detection and beyond. Cortex, 40, 593–604.PubMedCrossRefGoogle Scholar
  132. Ursu, S., Jones, M., Shear, M. K., Stenger, V. A., & Carter, C. S. (2003). Overactive action monitoring in obsessive—compulsive disorder: Evidence from functional MRI. Psychological Science, 14, 291–388.CrossRefGoogle Scholar
  133. van Veen, V. (2006). A neuroimaging approach to the relationship between attention and speed-accuracy tradeoff. Unpublished doctoral dissertation, University of Pittsburgh, Pittsburgh, PA.Google Scholar
  134. van Veen, V., & Carter, C. S. (2002a). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77, 477–482.CrossRefGoogle Scholar
  135. van Veen, V., & Carter, C. S. (2002b). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14, 593–602.PubMedCrossRefGoogle Scholar
  136. van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. NeuroImage, 27, 497–504.PubMedCrossRefGoogle Scholar
  137. van Veen, V., & Carter, C. S. (2006). Conflict and cognitive control in the brain. Current Directions in Psychological Science, 15, 237–240.CrossRefGoogle Scholar
  138. van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14, 1302–1308.PubMedCrossRefGoogle Scholar
  139. van Veen, V., Holroyd, C. B., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2004). Errors without conflict: Implications for performance monitoring theories of anterior cingulate cortex. Brain & Cognition, 56, 267–276.CrossRefGoogle Scholar
  140. Weissman, D. H., Giesbrecht, B., Song, A. W., Mangun, G. R., & Woldorff, M. G. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. NeuroImage, 19, 1361–1368.PubMedCrossRefGoogle Scholar
  141. West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 1122–1135.PubMedCrossRefGoogle Scholar
  142. West, R. (2004). The effects of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neuroscience, 16, 103–113.PubMedCrossRefGoogle Scholar
  143. West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739–748.PubMedCrossRefGoogle Scholar
  144. West, R., & Moore, K. (2005). Adjustments of cognitive control in younger and older adults. Cortex, 41, 447–616.CrossRefGoogle Scholar
  145. Wühr, P., & Ansorge, U. (2005). Exploring trial-by-trial modulations of the Simon effect. Quarterly Journal of Experimental Psychology, 58A, 705–731.Google Scholar
  146. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.PubMedCrossRefGoogle Scholar
  147. Yeung, N., & Cohen, J. D. (2006). The impact of cognitive deficits on conflict monitoring: Predictable dissociations between the errorrelated negativity and N2. Psychological Science, 17, 164–171.PubMedCrossRefGoogle Scholar
  148. Zirnheld, P. J., Carroll, C. A., Kieffaber, P. D., O’Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2004). Haloperidol impairs learning and error-related negativity in humans. Journal of Cognitive Neuroscience, 16, 1098–1112.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2007

Authors and Affiliations

  1. 1.University of CaliforniaDavis
  2. 2.University of CaliforniaBerkeley

Personalised recommendations